a2 United States Patent

Dahan

US009235490B2

US 9,235,490 B2
Jan. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)
(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

(58)

MODELING AND TESTING OF
INTERACTIONS BETWEEN COMPONENTS
OF A SOFTWARE SYSTEM

Inventor: Jean-David Dahan, Austin, TX (US)
Assignee: CA, INC.,, Islandia, NY (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 254 days.

Appl. No.: 13/244,076

Filed: Sep. 23, 2011
Prior Publication Data
US 2015/0286470 Al Oct. 8, 2015

Related U.S. Application Data

Continuation-in-part of application No. 13/155,363,
filed on Jun. 7, 2011, now Pat. No. 8,966,454.

Provisional application No. 61/407,008, filed on Oct.
26, 2010.

Int. Cl1.

GO6F 15/173 (2006.01)

GO6F 9/44 (2006.01)

GO6F 1130 (2006.01)

GO6F 11736 (2006.01)

U.S. CL

CPC GO6F 11/3006 (2013.01); GO6F 11/30

(2013.01); GOGF 11/3608 (2013.01)
Field of Classification Search
USPC 709/224, 223, 717/104, 124, 155, 171,
717/120, 127, 128, 131; 370/252
See application file for complete search history.

Component Vi

Compenent i
201l
Agent
il

Componert |
200}
Connect A

’;%e!m 23

G-202-IN /

A-745-OUT A-745-IN/

E-1105-0UT

Testing Database 80

Component lli | =~ 575~ ~ ~ | Component fV

E-1105-1

(56) References Cited

U.S. PATENT DOCUMENTS

5,450,586 A 9/1995 Kuzara et al.
5,581,696 A 12/1996 Kolawa et al.
6,002,871 A 12/1999 Duggan et al.
6,249,882 Bl 6/2001 Testardi
6,381,628 B1* 4/2002 Huntccooeovvvvvenrnnnn. 709/201
6,473,707 Bl 10/2002 Grey
6,513,155 B1* 1/2003 Alexanderetal. 717/124
6,587,969 Bl 7/2003 Weinberg et al.
6,601,020 Bl 7/2003 Myers
6,668,371 B2 12/2003 Hamilton et al.
7,310,777 B2 12/2007 Cirne
7,343,587 B2 3/2008 Moulden, Jr. et al.
7,362,709 B1* 4/2008 Huietal.ccccoonen. 370/237
7,382,371 B1* 6/2008 Ciabarraccccoovrnen. 345/440
7,392,507 B2 6/2008 Kolawa et al.
(Continued)
OTHER PUBLICATIONS

J. Case, et. al., A Simple Network Management Protocol (SNMP),
May 1990, IETF, RFC 1157, 1-36.*

(Continued)

Primary Examiner — Jason Mitchell
Assistant Examiner — Mark Gooray
(74) Attorney, Agent, or Firm — Patent Capital Group

(57) ABSTRACT

An agent interfacing with a first software component identi-
fies a first network connection between the first software
component and a second software component. An amount of
data exchanged between the first and second software com-
ponents over the first network connection is determined. A
particular fragment indicator is generated based on the
amount of data. The particular fragment indicator is sent to an
instrumentation broker for use in the identification of a par-
ticular transaction fragment. In some aspects, the particular
transaction fragment can be used in the analysis of a transac-
tion including the particular transaction fragment.

22 Claims, 16 Drawing Sheets

5 3506

= foneg o
W5z

=

200V}

Agent
SO0V

L

Connect E

[—
11058

Component V
200V,

Agent
60(V)

US 9,235,490 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,529,242 B1* 5/2009 Lyle ..o 370/392

7,721,265 Bl 5/2010 Xuetal.
8,015,279 B2 9/2011 Christodoulou et al.
8,966,454 Bl 2/2015 Michelsen et al.
8,984,490 Bl 3/2015 Dahan
2002/0026535 Al 2/2002 Srinivasan
2003/0088663 Al* 5/2003 Battatetal. 709/224

2004/0025083 Al
2004/0068560 Al
2004/0123272 Al
2004/0225919 Al
2005/0097515 Al
2005/0102423 Al
2005/0204201 Al
2006/0037000 Al
2006/0048100 Al
2006/0059169 Al
2006/0129992 Al

2/2004 Nanja et al.

4/2004 Oulu et al.

6/2004 Bailey et al.
11/2004 Reissman et al.

5/2005 Ribling

5/2005 Pelavin et al.

9/2005 Meenakshisundaram et al.

2/2006 Speeter et al.

3/2006 Levy et al.

3/2006 Armishev

6/2006 Oberholtzer et al.
2006/0206870 Al 9/2006 Moulden, Jr. et al.
2006/0225030 Al 10/2006 Deffler
2007/0258387 Al* 11/2007 Pateletal.ccc.o...... 370/254
2008/0090549 Al* 4/2008 Vialenetal. 455/405
2008/0262797 Al* 10/2008 Carusietal. 702/186
2009/0049429 Al* 2/2009 Greifeneder et al. 717/128
2009/0199274 Al* /2009 Frazieretal. ..o 726/4
2011/0302235 Al 12/2011 Monk et al.

OTHER PUBLICATIONS

J. Moy, OSPF Version 2, Apr. 1998, IETF, RFC 2328, 1-244.*
Suhayya Abu-Hakima, et. al., A Common Multi-Agent Testbed for
Diverse Seamless Personal Information Networking Applications,
Jul. 1998, IEEE, IEEE Communications Magazine, pp. 68-74.*
Xipeng Xiao, et.al., Reducing routing table computation cost in
OSPF, 1999, IEEE, , 119-124.*

LISA, 2.0 User’s Guide, Interactive TKO, Feb. 27, 2003, pp. 1-130.
LISA, 2.0 Developer’s Guide, Interactive TKO, Mar. 13, 2003, pp.
1-23.

OASIS, “ebXML Test Framework Draft Document—Version 0.91”,
Dec. 2002, The Organization for the Advancement of Structured
Information Standards, 92 pages.

U.S. Appl. No. 13/155,363, filed Jun. 7, 2011.

U.S. Appl. No. 13/244,029, filed Sep. 23, 2011.

Andrews et al., “Tool Support for Randomized Unit Testing”, Jul.
2006, pp. 36-45, available online at <http://delivery.acm.org/1
0.1145/1150000/1145741 /p36-andrews.pdf>.

Saff et al., “Automatic Test Factoring for Java”, Nov. 2005, pp.
114-123, available online at <http://delivery.acm.org/1 0.1145/111
0000/11 01927/pl 14-saff.pdf>.

Chang Liu, “Platform-Independent and Tool-Neutral Test Descrip-
tions for Automated Software Testing”, Jun. 2000, available online at
<http://delivery.acm.org/1 0.1145/340000/337598/p7 13-liu.pdf>.
Tanenbaum, Andrew S., “Structured Computer Organization,”
Prentice-Hall, Inc. 2nd Edition, 1984 (ISBN 0138544891, 11).
Non-Final Office Action in U.S. Appl. No. 13/155,363 mailed on
May 14, 2013.

Response to Non-Final Office Action dated May 14, 2013 in U.S.
Appl. No. 13/155,363, filed Aug. 14, 2013.

Non-Final Office Action inU.S. Appl. No. 13/244,029 mailed on Apr.
12, 2013.

Response to Non-Final Office Action dated Apr. 12, 2013 in U.S.
Appl. No. 13/244,029, filed Jul. 12, 2013.

U.S. Appl. No. 14/628,230, filed Feb. 21, 2015 and entitled Modeling
and Testing of Interactions Between Components of a Software Sys-
tem, inventors John J. Michelsen et al.

Request for Continued Examination and Amendment in U.S. Appl.
No. 13/155,363, filed May 27, 2014.

Notice of Allowance in U.S. Appl. No. 13/155,363 mailed on Oct. 7,
2014.

Notice of Allowance in U.S. Appl. No. 13/244,029 maled on Nov. 6,
2014.

Final Office Action in U.S. Appl. No. 13/155,363 mailed on Jan. 27,
2014.

Final Office Action in U.S. Appl. No. 13/244,027 mailed on Jan. 16,
2014.

Request for Continued Examination and Amendment in U.S. Appl.
No. 13/244,027, filed Apr. 16, 2014.

* cited by examiner

US 9,235,490 B2

Sheet 1 of 16

2016

Jan. 12,

U.S. Patent

L Ol

G)03

08
uoljesyddy

S
aseqEIe(

08
aseqejeq buyss |

7103 1109
})OE
% asegeleq 6
WSAS 3 IV
€109 2109
ciie ¢l
B0NIBG 90IAIOG

0L

or
SINPO IS8

US 9,235,490 B2

Sheet 2 of 16

Jan. 12, 2016

U.S. Patent

¢ Ol

AN

08 eseqgeieq Bunss

N

Ne— |

0/ sxoug

AT TN

¥ SS84PPY di
Q07 sseqeleq

¥4
pesiyy

)09 usby

TN
~— A

£ SSBIPPY
007 908G GOM

Evy 12109

o7z iz Hmwwmw
18I0 8B | [OIMES | | o oga
o wedy | | @08 1109
Jusby aby
2 SS9IppY d
F0Z 10088 08

08/¢€¢18

| $SQUIPPY d
707 Jasmolg

U.S. Patent Jan. 12, 2016 Sheet 3 of 16 US 9,235,490 B2

5 350a

Component If
20(h
Agent .
804l 1 452; C
Component |
i@l Connect D
Component 1 [7308 Component IV
Agent '—.Connect A 20! "“ 20‘ lV)_
800 7458 Connect E -
Agen; TT05h Agent
60N go(yv
Component V
20(V}
Broker 70 /ége\?t
/-’_‘M g
_____/_’/
Testing Database 80
_’/

F1G. 3A

U.S. Patent Jan. 12, 2016 Sheet 4 of 16 US 9,235,490 B2

Component Vi

200 Component I

c 2040

e%”o Agent T

2 801 }’fgfgs
8 T~
Component | Connect = -
200 - — =355 — — 7 Component IV
Agent Connect A 20(1V)
(C tE
2 [|-5058
i 1 (i
AN

G-202-IN / 7%
-745-IN / Ny
A-745-0UT %
E-1105-0UT G N < | ComponentV
20(V)
Agent
Broker 70
_ 80(V)
/‘— -\ g
Ne—
E-1105-IN
Testing Database 8C
Ne—

FiG. 3B

U.S. Patent

Jan. 12, 2016

Component i

20040
Agent

Component |
2

Agent

B-1452-0UT"

C-498-0UT,

Broker 70

e
]

Testing Database 80

Ne—

Sheet 5 of 16

US 9,235,490 B2

C tD
Compornent il |- 022;;
2001H
Connect E

[.,Agent

Component V
C-498-IN

B-1452-IN/
D-432-0UT

Component IV

200V}

Agent
80(Vvy

FlG. 3C

US 9,235,490 B2

Sheet 6 of 16

Jan. 12, 2016

U.S. Patent

- -~ - - - - N1 f4tr4 S3A V10T | 95989 | SOA 13)
NI SOTT S3A aoot thrad N0 S011 S3A TOT | €6909 Fil SOA 3

100 (4374 S3A @001 | 8¥90S N1 ZEY S3A 2T1T1 08 Hit SOA d \HQQ@V
NI sl S3A aoot 08 ino Zapy S3IA 1071 | IvT1S I S9A o}
NI <0t S3A 27101 08 N0 [43)3 S3A g107T | TepsS t SOA g
N GQps S3A TT'T £hy Nno 372 S3A V10T | 88b6v | SOA v

|m4 IT+X=1
14

- e - - b e Nt [Av]4 S3A V10T | 9995% ! S 9

Ano [44N1 S3A DTT'T | 00009 i NI 7T SaA ot eyt fh ON 4 .\\N»QNV
Nt S0T1 S3A aopol £vy Al iNo SOTL S3A 2'T°0°T | 6909 tH SOA 3

ino ey S3A Qo1 | 8pels Al e - ON 2TTT 08 Il SaA a

g,

- - ON dqoot 08 Al - - ON Lot | TeTly i SO J \\.N! 09%
N 0 S3A IToT 08 tH ~ ~ ON 10T | TevGo { SBA g
NI Svs S3A ITTT vy I ino Sl S3A Y10l | 88v6Y | S2A v

U.S. Patent Jan. 12, 2016 Sheet 7 of 16 US 9,235,490 B2

5 550a

56037 565a7
SERVICE A — SERVICE B
Methad etwork | T D
etho etwor
. / \,/’/ \\w/ \\//‘/ \\/ \ V] >
Agent 570a
B0
FIG. 5A
SGOb? 565b7

- 5552 5 550b

SERVICE A

Method Network 570b 5752
Calt Call

T p Thread A /‘\..\/, "\\ P B SERVICE B
' 1
SN N | Network
R A P> SERVICE C

‘ Thread C —
Agent \ ’jl * 2585
9 SERVICED

80) ;

FIG. 5B

590

U.S. Patent Jan. 12, 2016 Sheet 8 of 16 US 9,235,490 B2

1 990 5 550c

SERVICE A
Method Thread A Network m)'\ 5752
Call . PN A Call
BV VAVAVY Y, — SERVICE B
4 Caﬁ l‘ 4#

-/ N N

Thread D
1#

Agent W
80

FIG. 5C

US 9,235,490 B2

Sheet 9 of 16

Jan. 12, 2016

U.S. Patent

9 °9H

581A¢ GYL

0] joig

7 108UU0)

08 eseqejeq Bunsey

09
ANIOVY

N aprayy

PN gpeayy T

BN v peasy] Y
5532044
(44}
AININOCJAIOD 3YVYMLI0S

S3IAQ 7€9

A

A JDauL0)

Jr 089

U.S. Patent Jan. 12, 2016 Sheet 10 of 16 US 9,235,490 B2

(-) FIG. 7

Has a request or response
been detected?
300

Yes

Detect characteristics of request / response
305

:

Send information identifying detected
characteristics to instrumentation hroke
310

U.S. Patent Jan. 12, 2016 Sheet 11 of 16 US 9,235,490 B2

FlG. 8

¢ Star)
:

Sort received frames, based upon timing
information
400

:

Group sorfed frames into transactions,
based upon information identifying the
monitored components
410

Generate synthetic frame(s)
430

Synthetic frames needed?
420

(Finish)

U.S. Patent Jan. 12, 2016 Sheet 12 of 16 US 9,235,490 B2

(s)

:

Display information representing
system under test
500

FiG. 9

Y

Display information representing
characteristics of test case execution in
system under test
505

Display details of
Does a user select :
, : ' Yes | the transaction or
to view details of a transaction or e)
component A
component? B15
510 -
Does a user Modify the test
select to use the information to case based upon 5
modify a test case? the user selection) 4
520 525

Execute the
test case and
| | update information Does a user select to No
identifying | execute a test case?
characteristics 530
535

U.S. Patent Jan. 12, 2016 Sheet 13 of 16 US 9,235,490 B2

5 1000

Identify a network connection involving first
and second software components
1005

'

Receive data from the first component
identifying an amount of data exchanged
over the network connection
1010

'

Receive data from the second component
identifying the amount of data
1015

'

Determine a particular transaction fragment
involving the first and second components
from the received data
1020

FIG. 10

U.S. Patent

Jan. 12, 2016 Sheet 14 of 16

Identify a network connection involving first
and second software components
1105

I

Determining an amount of data exchanged
over the network connection
1110

!

Generate a transaction fragment indicator
based on the amount of data
1115

‘

Send fragment indicator to an
instrumentation broker
1120

FIG. 11

US 9,235,490 B2

5 1100

US 9,235,490 B2

Sheet 15 of 16

Jan. 12, 2016

U.S. Patent

Ll 9Id
sbumog
G0G MOPUIA StiEleq
uny
89i} Aewwng sfspy ojy
Wod TAX MeY - s71oS || £ar3 || ssuocdsay || 1s8nbey 6o oseg
709 suondo sigleg SUONaSSY
— sialftd
0% or 10g 1)0¢
uoneoyddy waishs L aseqele([0S sdaig
dy3) 128
el gl SMAIA
Gie e <o o :ﬂo
sseqelR(g B0IMIOS 21 B0MIeS L PO Ojuf 8seq
1881 203 MOPUIA
Ai0JSiH uonnoaxy TOG MOPUIM
T00 1884 Japun walshg jo japoy {eoydesn aspD) 188} 85D js8)

{09 moputp, Aeydsic

U.S. Patent Jan. 12, 2016 Sheet 16 of 16 US 9,235,490 B2

Computing Device 700
Memory 706
Instrumentation Broker 70
Processor 702 b
|| {User Interface 560
Test Execution Module
Interface 704 — o70
Test Module 10

P FIG. 13
S~ -

Test Case Information 780

Testing Database 80

~—_

US 9,235,490 B2

1
MODELING AND TESTING OF
INTERACTIONS BETWEEN COMPONENTS
OF A SOFTWARE SYSTEM

This patent application is a continuation-in-part of and
claims the benefit of priority under 35 U.S.C. §120 to U.S.
patent application Ser. No. 13/155,363, filed Jun. 7, 2011,
entitled “MODELING AND TESTING OF INTERAC-
TIONS BETWEEN COMPONENTS OF A SOFTWARE
SYSTEM?”, which is expressly incorporated herein by refer-
ence in its entirety. U.S. patent application Ser. No. 13/155,
363 itself incorporates by reference and claims the benefit of
priority under 35 U.S.C. §120 to U.S. Provisional Patent
Application Ser. No. 61/407,008, filed Oct. 26, 2010, entitled
“MODELING AND TESTING OF INTERACTIONS
BETWEEN COMPONENTS OF A SOFTWARE SYS-
TEM”.

TECHNICAL FIELD

This invention relates to software testing and, more par-
ticularly, to testing service oriented architectures and similar
systems that include multiple independent components.

BACKGROUND

In many testing scenarios, it is difficult to determine how
each of several different components of a software system is
affecting performance. For example, a software developer
may be unable to determine whether a new application is
responding too slowly due to performance problems within
the application itself, network congestion affecting the appli-
cation’s interactions with a web server from which the appli-
cation obtains data, or a sluggish database that the web server
interacts with. Since each of these components may be imple-
mented independently, it is difficult to be able to test all of the
components in a manner that captures the interactions
between the components. Furthermore, since some of the
components may not allow modification of their code for
testing purposes, this difficulty may be exacerbated.

SUMMARY

In general, one aspect of the subject matter described in this
specification can be embodied in methods that include the
actions of identifying a first network connection between a
first software component and a second software component,
receiving first data from the first software component identi-
fying an amount of data sent over the first network connec-
tion, and receiving second data from the second software
component identifying the amount of data sent over the first
network connection. Further, a particular transaction frag-
ment can be determined, from the first and second data, the
transaction fragment involving the first and second software
components over the first network connection.

In another general aspect of the subject matter described in
this specification can be embodied in systems that include at
least one processor device, at least one memory element, and
an instrumentation broker. The instrumentation broker, when
executed by the at least one processor device, can identify a
first network connection between a first software component
and a second software component, receive first data from the
first software component identifying an amount of data sent
over the first network connection, receive second data from
the second software component identifying the amount of
data sent over the first network connection, and determine,

20

25

35

40

45

50

55

2

from the first and second data, a particular transaction frag-
ment involving the first and second software components over
the first network connection.

In yet another general aspect, subject matter described in
this specification can be embodied in methods thatinclude the
actions of using an agent interfacing with a first software
component to identify a first network connection between the
first software component and a second software component.
An amount of data exchanged between the first and second
software components over the first network connection can be
determined. A particular fragment indicator can be generated
based on the amount of data. The particular fragment indica-
tor can be sent to an instrumentation broker for use in the
identification of a particular transaction fragment.

In another general aspect of the subject matter described in
this specification can be embodied in systems that include at
least one processor device, at least one memory element, and
atleast one instrumentation agent. The instrumentation agent,
when executed by the at least one processor device, can
identify a first network connection between a first software
component and a second software component, determine an
amount of data exchanged between the first and second soft-
ware components over the first network connection, generate
particular fragment indicator based on the amount of data,
and send the particular fragment indicator to a instrumenta-
tion broker for use in the identification of a particular trans-
action fragment. The instrumentation agent can monitor the
first software component.

These and other embodiments can each optionally include
one or more of the following features. The first and second
data can include an identification of the first network connec-
tion. The identification of the first network connection
included in the first and second data can include a respective
port identifier corresponding to each of the first and second
software components and a respective IP address of each of
the first and second software components. Determining the
particular transaction fragment can include determining a
correspondence between the first and second data based at
least in part on the inclusion of the amount of data in each of
the first and second data. Determining the correspondence
between the first and second data can be based at least in part
on identification of the first network connection in each of the
first and second data. The first data can indicate that data sent
over the first network connection was outbound relative to the
first software component and the second data can indicate that
the data sent over the first network connection was inbound
relative the second software component. At least a portion of
a transaction tress can be generated that identifies the first
transaction fragment as included within a particular transac-
tion. Sub-tree data can be received from the first software
component describing one or more additional transaction
fragments identified by an agent corresponding to the first
software component. The particular transaction fragment can
correspond to a first thread executed at the first software
component, and the one or more additional transaction frag-
ments can correspond to at least one other thread initiated
through the execution of the first thread.

Further, embodiments can each optionally include one or
more of the following additional features. A second network
connection between the second software component and a
third software component can be identified. Third data can be
received from the second software component identifying a
second amount of data sent over the second network connec-
tion, and fourth data can be received from the third software
component identifying the second amount of data sent over
the second network connection. A second transaction frag-
ment involving the second and third software components

US 9,235,490 B2

3

over the second network connection can be determined from
the third and fourth data, a second transaction. An association
between the second and third data can be identified. It can be
determined that the first and second transaction fragments are
fragments in a common transaction. The second and third
data can be received together from the second software com-
ponent. The second and third data can be used to determine an
order of the first and second transaction fragments within the
common transaction. Determining the transaction fragments
can include identifying agents corresponding to software
components involved in identified network connections, and
monitoring the identified agents for data describing amounts
of data exchanged over the corresponding network connec-
tions.

Still further, embodiments can each optionally include one
or more of the following additional features. A second net-
work connection can be identified. Third data can be received
from a first agent interfacing with the first software compo-
nent, the third data identifying a particular amount of data
exchanged over the second network connection. It can be
concluded that no other data will be received, relating to the
second network connection, from agents corresponding to
software components participating in the second network
connection. A second transaction fragment involving the first
software component can be determined from the received
third data. It can be identified from the third data that the data
exchanged over the second network connection is outbound
relative to the first software component. It can be further
determined that the first software component is a root node in
a transaction tree including at least the second transaction
fragment. Alternatively, it can be identified, from the third
data, that the data exchanged over the second network con-
nection is inbound relative to the first software component,
and it can be determined that the first software component is
a leaf node in a transaction tree including at least the second
transaction fragment. An unidentified software component
participating in the second network connection can be deter-
mined that does not have a corresponding agent. Network
connections can be TCP connections. The first data can be
generated by a first agent interfacing with the first software
component and the second data can be generated by a second
agent interfacing with the second software component. A
model generator can also be provided that is configured to
generate a model of a particular transaction including the
particular transaction fragment, the model adapted for dis-
play on a computing device and including a representation of
the particular transaction fragment.

Embodiments can each optionally include one or more of
the following additional features. The first software compo-
nent can send the exchanged data to the second software
component, and the particular fragment indicator can identify
the amount of data as outbound relative to the first software
component. A complimentary fragment indicator can be gen-
erated by a second agent corresponding to the second soft-
ware component, the complimentary fragment indicator
based on the amount of data exchanged between the first and
second software components over the first network connec-
tion, and the particular transaction segment is identified based
on an identified correlation between the particular fragment
indicator and the complimentary fragment indicator. The first
software component can receive the exchanged data, and the
fragment indicator can identify the amount of data as inbound
data relative to the first software component. Information can
be sent to an instrumentation broker identifying the first net-
work connection, such as through the particular fragment
indicator. Such information can be used to identify that the

15

20

30

40

45

50

55

4

agent operates in connection with the first network connec-
tion. Such information can be sent before sending the particu-
lar fragment indicator.

Further, embodiments can each optionally include one or
more of the following additional features. The first network
connection can be identified as corresponding to a particular
software process executed by the first software component
and identified from a plurality of network connections involv-
ing the first software component. The particular software
process includes a particular execution thread and the first
network connection is identified as corresponding to the par-
ticular operation based at least in part on an identification that
the first network connection was initiated within the particu-
lar execution thread. The particular software process includes
at least one particular execution thread that launches at least
one child execution thread, and the launching of the at least
one child execution thread by the particular execution thread
can be identified by the agent. The particular execution thread
can be identified as a parent of the child execution thread.
Transaction fragment data can be generated corresponding to
transaction fragments performed through the child execution
thread. The transaction fragments performed through the
child execution thread can be associated with the particular
transaction fragment. Associating can include defining a rela-
tionship between the transaction fragments performed
through the child execution thread with the particular trans-
action fragment based on the parent-child relationship of the
particular execution thread to the child execution thread. The
relationship between the transaction fragments can be defined
by a transaction tree and at least one of the transaction frag-
ments performed through the child execution thread is repre-
sented as a branch of a transaction tree node representing the
particular transaction fragment. The generated transaction
fragment data can be sent corresponding to transaction frag-
ments performed through the child execution thread to the
instrumentation broker. It can be determined whether trans-
action fragments performed through the child execution
thread are relevant to a particular transaction including the
particular transaction fragment. Determining whether trans-
action fragments performed through the child execution
thread are relevant to the particular transaction can include
previewing the particular software process by the agent.
Determining whether transaction fragments performed
through the child execution thread are relevant to the particu-
lar transaction can include determining whether the parent
execution thread is at least partially dependent on data
returned by the child execution thread. Child execution
threads providing data upon which the corresponding parent
execution thread is at least partially dependent can be deter-
mined to be relevant to the particular transaction.

Still further, embodiments can each optionally include one
or more of the following additional features. Determining the
amount of data exchanged between the first and second soft-
ware components can include counting, at the first software
component, the number of bytes exchanged over the first
network connection. The agent interfacing with the first soft-
ware component can be used to identify a second network
connection between the first software component and another
software component. A second amount of data exchanged
between the first software component and the other software
component over the first network connection can be deter-
mined. A second fragment indicator can be generated based
on the second amount of data. The particular fragment indi-
cator can be sent to the instrumentation broker for use in the
identification of a second transaction fragment different from
the particular transaction fragment.

US 9,235,490 B2

5

Some or all of the features may be computer-implemented
methods or further included in respective systems or other
devices for performing this described functionality. The
details of these and other features, aspects, and implementa-
tions of the present disclosure are set forth in the accompa-
nying drawings and the description below. Other features,
objects, and advantages of the disclosure will be apparent
from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention
may be acquired by referring to the following description and
the accompanying drawings, in which like reference numbers
indicate like features.

FIG. 1 is a block diagram of a test system in which a
software architecture that includes multiple independent soft-
ware components is being tested;

FIG. 2 is a block diagram of another system under test;

FIGS. 3A-3C are block diagrams illustrating example
interactions in an example system for generating information
for use in modeling and testing;

FIGS. 4A-4B are table diagrams representing example col-
lected data that can be used by an example instrumentation
broker;

FIGS. 5A-5C are schematic diagrams illustrating threads
included in one or more transactions in an example comput-
ing system;

FIG. 6 is a block diagram illustrating collecting of trans-
action data by at least one instrumentation agent in an
example computing system;

FIG. 7 is a flowchart of an example technique for generat-
ing information for use in modeling and testing that can be
performed by an instrumentation agent;

FIG. 8 is a flowchart of an example technique for organiz-
ing information that can be performed by an instrumentation
broker;

FIG. 9 is a flowchart of an example technique for generat-
ing a model of a system under test and allowing a user to
interact with the system under test by interacting with the
model;

FIG. 10 is a flowchart of another example technique for
organizing information that can be performed by an instru-
mentation broker;

FIG. 11 is a flowchart of another example technique for
generating information for use in modeling and testing that
can be performed by an instrumentation agent;

FIG. 12 is a block diagram of a display window that
includes a model of a test system and allows a user to interact
with the test system via the model;

FIG. 13 is a block diagram of a computing device, illus-
trating how an instrumentation broker and other components
of a test module can be implemented in software.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments of the invention
are provided as examples in the drawings and detailed
description. It should be understood that the drawings and
detailed description are not intended to limit the invention to
the particular form disclosed. Instead, the intention is to cover
all modifications, equivalents and alternatives falling within
the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of an example test system in
which a software architecture that includes multiple indepen-

10

15

20

25

30

35

40

45

50

55

60

65

6

dent software components is being tested. As shown, the
software architecture includes a test module 10, a plurality of
services 20(1), 20(2), and 20(3), databases 30(1) and 30(2),
an enterprise resource planning (ERP) system 40, and one or
more applications 50. All or some of these components can be
implemented in software that is executing on one or more
computing devices (e.g., a personal computer, server, per-
sonal digital assistant, telephone, tablet computer, smart-
phone, or the like).

The components shown in FIG. 1 can all be implemented
on the same computing device. However, in many embodi-
ments, at least some of these components (or portions thereof)
can be implemented on different computing devices, all or
some of which can be coupled via one or more networks (e.g.,
a local area network, storage area network, and/or wide area
network such as the Internet).

At least some of the components being tested by the test
system may not yet be in production (i.e., these components
are still in a development and/or testing phase), while other
components may already be in production (e.g., these com-
ponents have already been tested and released and are now
being used in a production environment). The components
that are still in development and/or undergoing testing are
referred to as being pre-production components.

Each service 20(1)-20(3) can provide any of a variety of
different services and can be implemented as any one or more
of a variety of software components. For example, each ser-
vice 20 can be a web service (e.g., having an interface defined
by a web service definition language (WSDL) file), a web site
(e.g., as implemented by one or more web pages provided by
a web server), enterprise service, or the like. Services 20(1)-
20(3) can each be implemented as an object or other compo-
nent (e.g., an enterprise service bus (ESB) construct, an
Enterprise JavaBean (EJB), a web component such as a Jav-
aServer Pages (JSP) page or Java servlet component, other
standalone Java component, or Java applet), as an application
that includes any of the previously-mentioned components,
or the like.

Databases 30(1) and 30(2) can each include a database
server, database management system, and other utilities con-
figured to assist in responding to requests to access informa-
tion stored in a database. Application 50 can be any of a
variety of different applications and can include any one or
more of a variety of different software components. Other
components that can be included in a testing system such as
the one shown in FIG. 1 include a legacy application operat-
ing on a mainframe, a data service, an order manager, a
transactional data store, an enterprise application integration
(EAI) system, or the like.

Test module 10 is configured to execute a test case by
sending requests to and receiving responses and other data
from one or more of the components of the system under test.
In this example, the test module executes a test case that calls
services 20(1) and 20(2). In response to being called, each
service should return a response to test module 10. Test mod-
ule 10 can then verify that the response received from each
service was the expected response. Service 20(1) generates its
response independently, without needing to call any other
service or component. In contrast, service 20(2)’s response is
dependent upon database 30(1), which in turn can be depen-
dent upon ERP system 40, and service 20(3), which in turn
can depend on other databases (e.g., 30(2)), applications (e.g.,
50) and the like.

To aid in monitoring the performance of the different com-
ponents in the system under test, one or more of the compo-
nents can include an instrumentation agent. In particular,
service 20(1) includes instrumentation agent 60(1), service

US 9,235,490 B2

7

20(2) includes instrumentation agent 60(2), service 20(3)
includes instrumentation agent 60(3), ERP system 40
includes instrumentation agent 60(4), and application 50
includes instrumentation agent 60(5).

Instrumentation agents 60(1)-60(5) (collectively referred
to herein as instrumentation agents 60) can be software-
implemented agents that are configured to provide visibility
into the operations of each instrumented component to test
module 10. Each instrumentation agent 60 is configured to
detect requests and responses being sent to and from the
component in which that instrumentation agent is embedded.
Each instrumentation agent 60 is configured to generate
information about the detected requests and/or responses and
to report that information to an instrumentation broker 70
that, in some instances, is coupled to, or otherwise associated
with test module 10. Additionally, each instrumentation agent
60 can be configured to detect and report on activity that
occurs internally to the component in which the instrumen-
tation agent is embedded.

While the example of FIG. 1 illustrates a system in which
there is one instrumentation agent per component, other
embodiments may be implemented differently. For example,
in some systems, there is a one-to-one correspondence
between the number of instrumentation agents within a com-
ponent and the number of processes (or other subcompo-
nents) to be monitored within that component. In such
embodiments, each instrumentation agent monitors and
reports on its corresponding sub-component.

In response to detecting a request, response, and/or other
activity to be monitored, each instrumentation agent 60 is
configured to detect one or more characteristics associated
with that activity and/or the monitoring of that activity by the
instrumentation agent. The characteristics can include a
frame identifier, which identifies a message, with respect to
the instrumentation agent, sent by the instrumentation agent
to the instrumentation broker to report the characteristics; a
parent identifier, which identifies the requester that generated
the request sent to the component or sub-component moni-
tored by the instrumentation agent; a transaction identifier,
identifying the transaction, with respect to the component or
sub-component being monitored, such as transactions
between components carried out through communications
and calls made over one or more network connections; and an
agent identifier that identifies the instrumentation agent, with
respect to the other instrumentation agents in the testing sys-
tem, that is generating the characteristics, among other char-
acteristics. Such characteristics can include other information
such as a system clock value, current processor and/or
memory usage, contents of the request, contents of the
response to the request, identity of the requester that gener-
ated the request, identity of the responder generating the
response to the request, Java virtual machine (JVM) statistics,
standard query language (SQL) queries (SQLs), number of
database rows returned in a response, logging information
(e.g., messages logged in response to a request and/or
response), error messages, simple object access protocol
(SOAP) requests, values generated by the component that
includes the instrumentation agent but that are not returned in
the response to the request, web service invocations, EJB
method invocations, EJB entity lifecycle events, heap sizing,
identification of network connections involved in transac-
tions, identification of messages and data exchanged between
components, including the amount of such data, and the like.
Characteristics can also include the thread name of a thread
processing the request to generate the response and other data
describing threads involved in a transaction, the class name of
the class of an object invoked to process the request to gen-

10

15

20

25

30

35

40

45

50

55

60

65

8

erate the response, a Web Service signature used to contain
the request and/or response, arguments provided as part of the
request and/or response, a session identifier, an ordinal (e.g.,
relating to an order within a transaction), the duration of time
spent processing the request and/or generating the response,
state information, a local Internet Protocol (IP) address, a
local port, a remote IP address, a remote port, and the like.

As the above examples indicate, characteristic information
can include information generated by the instrumentation
agent itself and information generated and/or processed by
the component or sub-component monitored by the instru-
mentation agent. The instrumentation agent then causes
information identifying those characteristics to be provided
to an instrumentation broker 70 within (as shown) or coupled
to test module 10. In some embodiments, each instrumenta-
tion agent collects information to form a message, also
referred to herein as a frame, which describes characteristics
associated with both a detected request and a detected
response corresponding to that request. In such embodiments,
the instrumentation agent can wait for the response corre-
sponding to the request to be generated and sent before send-
ing the frame to the instrumentation broker.

Instrumentation agents 60 can monitor and report charac-
teristics independently for each transaction in which the com-
ponent (e.g., services 20, ERP system 40, application 50, etc.)
being monitored participates. In addition to monitoring the
performance of a single component and aggregating informa-
tion about that component over a multitude of transactions
(such that information about the performance of individual
transactions can, for example, averaged, based upon the
observed performance of the component over the course of
performing the multitude of transactions), instrumentation
agents 60 can additionally provide characteristics that are
specific to and correlated with a specific transaction. More
particularly, these characteristics that are monitored and
reported by instrumentation agents 60 can be specific to and
correlated with a particular request and/or response generated
as part of a transaction.

Instrumentation agents 60 can monitor activity (e.g., such
as receipt of a request from test module 10 and any responses
or related activity generated in response to such a request)
initiated by test module 10, as well as activity generated in
response to requests received from other components beside
test module 10. Thus, instrumentation agents 60 can provide
information about individual transactions that are not neces-
sarily part of a test case.

In some embodiments, the instrumentation agents 60 com-
municate with instrumentation broker 70 via a messaging
system such as Java™ Message Service (JMS). For example,
instrumentation broker 70 can create a messaging system
topic for each transaction (referred to herein as a transaction
frame (TF) topic) and subscribe to that TF topic. The instru-
mentation agents 60, upon startup, broadcast their existence
to each other and/or to instrumentation broker 70. The instru-
mentation agents 60 can then get the TF topic from instrument
broker 70 and begin publishing messages onto a message bus
on that TF topic. Instrumentation broker 70 can monitor the
published messages and determine whether those messages
relate to the current TF topic. As needed, instrumentation
broker 70 creates new TF topics for new transactions.

Instrumentation agents 60 can alternatively communicate
with instrumentation broker 70 using techniques other than
those involving messaging systems. For example, instrumen-
tation agents 60 can write information to testing database 80
using database commands, and instrumentation broker 70 can
monitor those database commands to detect new information.

US 9,235,490 B2

9

Some instrumentation agents 60 can be implemented by
inserting a few lines of code into the software component (or
the application server associated with that software compo-
nent) being instrumented. Such code can be inserted into a
servlet filter, SOAP filter, a web service handler, an EJB3
method call, a call to a Java Database Connectivity (JDBC)
handler, and the like. For example, an instrumentation agent
configured to monitor an EJB can be configured as an EJB3
entity listener (e.g., to monitor entity beans) or interceptor
(e.g., to monitor session beans). For example, in some imple-
mentations, instrumentation agents 60 can include function-
ality similar to functionality described, for instance, in U.S.
patent application Ser. No. 11/328,510, titled “Instrumenta-
tion System and Method for Testing Software,” filed Jan. 9,
2006, and listing John J. Michelsen as an inventor, which is
hereby incorporated by reference in its entirety as if com-
pletely and fully set forth herein.

Some components (or their corresponding application
servers) may not provide users with the ability to modify their
code, and thus some instrumentation agents can be imple-
mented externally to the component being monitored in a
manner that can cause all requests and responses being sent to
and/or from that component to be handled by the instrumen-
tation agents. For example, for an existing database, an instru-
mentation agent can be implemented as a driver. Calling
components can be configured (e.g., by manipulating a driver
manager) to call the instrumentation driver instead of the
database’s driver. The instrumentation driver can in turn call
the database’s driver and cause the database’s driver to return
responses to the instrumentation driver. For example, in one
embodiment, the identity of the ‘real” driver for the database
can be embedded in the uniform resource locator (URL) that
is passed to the instrumentation driver. In this way, the instru-
mentation driver can intercept all calls to the database, detect
characteristics of those calls, pass the calls to the appropriate
database, detect characteristics of the corresponding
responses, and then return the characteristics of those calls
and responses to instrumentation broker 70.

In some embodiments, all or some of instrumentation
agents 60 are configured to perform interception and/or
inspection (e.g., using the Java™ Virtual Machine Tool Inter-
face, or JVM TI). Such an instrumentation agent can register
with the appropriate application programming agent (API)
associated with the component or process being monitored in
order to be notified when entry and/or exit points occur. This
allows the instrumentation agent to detect requests and
responses, as well as the characteristics of those responses. In
particular, this functionality can allow an instrumentation
agent to detect when a component begins reading and/or
writing from and/or to a socket, to track how much data is
accessed (e.g., read or written), obtain a copy of the data so
read or written, and generate timing information (as well as
information describing any other desired characteristics such
as inbound/read or outbound/write identifiers) describing the
time or order at which the data was read or written.

Some instrumentation agents 60 are configured to monitor
individual threads by monitoring the storage used by each
thread (i.e., the thread local storage for that thread). Such
instrumentation agents 60 can detect when the monitored
thread begins reading or writing to a thread local variable in
the thread local storage. In response to detecting this access to
the thread local variable, the instrumentation agent tracks the
amount (e.g., in bytes, as tracked by incrementing a counter)
of data that has been accessed, as well as the starting offset
within the thread local storage to which the access takes
place. In response to detecting that the thread’s access to the
thread local variable has ended, the instrumentation agent can

10

15

20

25

30

35

40

45

50

55

60

65

10

use the information about the access to identify characteris-
tics such as the time of the access, the variable being accessed,
the value being accessed, network calls being made, and the
like.

As noted above, in some implementations, one of the char-
acteristics that can be collected by instrumentation agents 60
is timing information, such as a timestamp, that indicates
when a particular request was received or when a particular
response was generated. As described in more detail below,
such timing information can be used by instrumentation bro-
ker 70 to identify that frames received from different instru-
mentation agents 60 are related to the same transaction. In
order to enable instrumentation broker 70 to rely on such
information, the instrumentation agents 60 can be configured
to synchronize the timers used by those agents to generate the
timing information with similar times used by other instru-
mentation agents in the same system. In some instances, any
one of a variety of conventional clock synchronization tech-
niques can be used.

In another implementation, the flow, organization, hierar-
chy, or timing of a particular transaction can be identified
through the generation of transaction identifiers that include
characteristics collected by instrumentation agents 60 for use
in identifying fragments of the transaction. Such transaction
identifiers, or transaction fragment identifiers, can include
data collected by instrumentation agents in connection with,
for example, the exchange of data, messaging, and other
communications between components in the transaction,
from thread jumps identified within software processes
involved in the transaction, and other features of the transac-
tion or fragments of the transaction.

As requests and responses progress through the test sys-
tem, additional characteristic information is captured and
sent to the instrumentation broker 70 by the instrumentation
agents 60. For example, when test module 10 sends a request
to service 20(2), instrumentation agent 60(2) can capture
characteristic information associated with that request (e.g.,
the time at which the request was received, the sender of that
request, the time at which corresponding requests were sent to
database 30(1) and/or service 20(3), how much data was
exchanged, the identity of the communication channel used in
the request or response, and the like) and the corresponding
response, and then send that characteristic information to
instrumentation broker 70. Instrumentation agents 60 can
send information to instrumentation broker 70 independently
of each other, as well as independently of the progress of the
test case.

The information returned to instrumentation broker 70 by
instrumentation agents 60 is temporarily stored (e.g., in a log
in testing database 80). Instrumentation broker 70 then orga-
nizes this information for more permanent storage in testing
database 80. As organized by instrumentation broker 70, the
information can be processed, manipulated, and displayed to
users by test module 10, as described in more detail below.

Instrumentation broker 70 organizes the information so
that information that describes characteristics of a portion, or
fragment, of a particular transaction is grouped with other
information describing the same transaction. Thus, instru-
mentation broker 70 groups individual frames, each of which
can be received from a different instrumentation agent 60,
into groups of frames that describe a complete transaction.

In some embodiments, in order to group frames, instru-
mentation broker 70 first sorts the frames based upon timing
information associated with and/or included within those
frames. After being sorted, the frames can be arranged in
ascending or descending order, with respect to the timing
information. For example, the frames can be sorted according

US 9,235,490 B2

11

to a timestamp indicating when each frame was generated,
when one or more requests identified in each frame were
generated or received, and/or when one or more responses
identified in each frame were generated or received. In some
embodiments, the frames can be sorted based upon multiple
pieces of timing information. In other examples, frames can
be sorted, for example, based on an amount of data
exchanged, the identity of a particular communication chan-
nel or network connection used, the identification of the par-
ticular agents that provided the frames, etc.

After sorting the frames, instrumentation broker 70 can
then group the frames into transactions. In one embodiment,
this act can involve looking at information indicating the
amount of data that was received and/or generated, as
detected by the instrumentation agent, as well as information
identifying the components or sub-components involved in
communicating with each other to cause the monitored activ-
ity. For example, such identity information can include infor-
mation identifying the network ports (e.g., of the requester
and responder) used to communicate a request and corre-
sponding response between a requester and responder. This
information can correlate two different frames that have simi-
lar timing information and data amounts, for example. For
instance, in one example, instrumentation agent 60(2) can
send a frame to instrumentation broker 70 indicating that,
among other things, service 20(2) sent a request that was
approximately 2K bytes in size to service 20(3) at 09:42:01.
Instrumentation agent 60(3) can send a frame to instrumen-
tation broker 70 indicating that, among other things, service
20(3) received a request that was approximately 2K in size
from service 20(2) at 9:42:55. Based upon this information,
instrumentation broker 70 can determine that the two frames
describe different portions of the same transaction. It is noted
that the amount of data identified in each frame is likely to not
be identical, but may likely be similar. Similarly, the timing
information may not be identical, but can likely be appropri-
ately similar or conform to a particular threshold of accept-
ability, given the communication delays between the
requester and responder. The timing and data amounts may be
organized in respective columns within a database.

In some implementations, frames can be grouped into
transactions based on the data amounts exchanged between
components without regard to timing data. Indeed, in some
examples, such an alternative approach can realize more eco-
nomical and accurate transaction matching or stitching than
an approach utilizing timing data. For example, agent can be
used, in cooperation with an instrumentation broker (e.g., 70)
to collect information pertaining to one or more network
connections participated in by monitored software compo-
nents. An agent can gather information from the perspective
of the software component it monitors, by collecting such
data as the IP address and port used by the software compo-
nent during the connection, the amount of data exchanged
over the network connection (i.e., measured from the time the
network connection was established between components),
as well as an indication of whether the amount of data is
inbound or outbound relative to the software component, and,
in some cases, the [P address and/or port number used by the
software component on the other end of the network connec-
tion. Particular network connections within the system (e.g.,
100) can be identified by comparing data describing network
connections at the respective software component to identify
participants in a common network connection (e.g., based on
identification of common network connection parameters,
including a similar amount of data sent over the connections).
Identified network connections can be mapped to a particular
portion, or fragment, of a transaction, and such fragments can

10

15

20

25

30

35

40

45

50

55

60

65

12

be grouped (e.g., using the collected network connection
description data) to identify particular transactions involving
multiple different software components (and network con-
nections), among other examples.

Instrumentation broker 70 can group frames into the same
transaction by adding a transaction identifier to (or modifying
an already-present transaction identifier within) the charac-
teristic information included in each frame. In particular, each
frame identified as corresponding to the same transaction is
associated with the same transaction identifier. In one
embodiment, the transaction identifier used for all of the
frames associated with the same transaction is the transaction
identifier associated with the first (i.e., earliest) frame asso-
ciated with that transaction. Generally, transaction identifiers
are generated in such a manner that the each transaction
identifier will be unique throughout time with respect to a
given testing system. The transaction identifiers can be orga-
nized into a transaction column within a database and can, in
at least some embodiments, be used as a primary key.

Within a group of frames associated with the same trans-
action, instrumentation broker 70 can order the frames, such
that the flow of the transaction can be followed from the start
ofthe transaction to the end of the transaction. Each frame can
include a field that identifies that frame (e.g., a frame ID), as
well as a field that identifies a parent frame (e.g., a parent
frame ID). The value of each frame’s parent frame 1D can
equal another frame’s frame ID. These frame identifiers can
be generated by the instrumentation agents. In one embodi-
ment, the frame identifiers can be generated from information
identifying the IP address (or other addressing information)
and port number used by the monitored component or sub-
component, the amount of data sent or received by the moni-
tored component during the monitored activity, and/or the
instrumentation agent itself. The parent and frame identifiers
can be organized into respective columns within a database.

As shown in FIG. 1, some components tested by the testing
system do not include instrumentation agents. Accordingly,
some of the activity that occurs within a transaction may not
be fully identified in any of the frames received from the
instrumentation agents. Instrumentation broker 70 is config-
ured to detect these situations and to generate appropriate
frames corresponding to or modeling the uninstrumented
components. These frames are referred to herein as synthetic
frames. Synthetic frames may not contain as much informa-
tion as is included in frames generated by instrumentation
agents.

To detect situations in which a synthetic frame is needed,
instrumentation broker 70 keeps track of all of the instrumen-
tation agents included in the testing system, as well as the
components or sub-components monitored by those instru-
mentation agents. Instrumentation broker 70 processes all of
the frames in the same transaction. For instance, if a particular
frame indicates that a request was received from a component
that is not being monitored by an instrumentation agent,
instrumentation broker 70 can create a synthetic frame for
that requester. This synthetic frame’s frame identifier can
then be set as the value of the parent identifier in the non-
synthetic frame that identified the request received from the
unmonitored component. Similarly, if a particular frame indi-
cates that a request was sent to a component that is not being
monitored by an instrumentation agent, instrumentation bro-
ker 70 can create a synthetic frame for the responder to which
the request was sent. The parent identifier of the synthetic
frame can be set to indicate the frame that identified the
request. The synthetic frames can have the same transaction
identifier as the frames that triggered creation of the synthetic
frame.

US 9,235,490 B2

13

Instrumentation broker 70 can include information such as
a frame identifier, transaction identifier, IP address, port, data
included in a request and/or response, and timing information
in a synthetic frame. This information can be generated by
instrumentation broker 70 from information in other non-
synthetic frames or even copied from other non-synthetic
frames. For example, the timing information can be calcu-
lated based upon a time at which the component represented
by the synthetic frame was sent a request by a requester and
the time at which the requester received a response back from
the component. The IP address and port can be copied from a
parent or child frame (a frame is a child frame of a parent
frame, for instance, if that frame identifies the parent frame in
its parent frame identifier field or can otherwise be identified
as child frame, such as through the identification that a trans-
action fragment represented by the child frame is a child of a
parent transaction (e.g., within a tree model of the transaction
or software process).

In some situations, a synthetic frame can be created in
response to processing one non-synthetic frame, and then
subsequently linked to another non-synthetic frame through
the use of a parent identifier. For example, in the example of
FIG. 1, instrumentation broker 70 can receive non-synthetic
frames from instrumentation agent 60(2), which monitors
service 20(2), and instrumentation agent 60(4), which moni-
tors ERP system 40. Database 30(1) is not instrumented, and
thus no agent is available to generate frames corresponding to
activity in database 30(1). Accordingly, in response to, for
example, processing a first non-synthetic frame received
from agent 60(4), instrumentation broker can create a syn-
thetic parent frame for the first frame that corresponds to
activity in database 30(1). Subsequently, when processing a
second non-synthetic frame received from instrumentation
agent 60(2), instrumentation broker 70 can detect that the
second frame describes a request sent to database 30(1).
Accordingly, instrumentation broker 70 can set the synthetic
frame’s parent frame identifier to indicate the second frame.

Once the information is organized and stored in testing
database 80, test module 10 can extract that information,
process the extracted information, display that information
(or graphics or text representing that information) to a user,
and/or allow a user to manipulate a test case based upon that
information. For example, the test module can use the infor-
mation in testing database 80 to identify which components
were involved in the execution of the test case; in order to
identify response times for certain system components, based
upon the differences in request and response times; and the
like, and to display that information to a user.

Test module 10 can display the processed information to a
user in a display window such as that shown in FIG. 12. The
displayed information can identify each component or sub-
component that was involved in the test case (e.g., each of the
components shown in FIG. 1). The user can then manipulate
the displayed information in order to see details of the testing
process and/or modify a test case.

As noted above, the characteristic information captured by
the instrumentation agents 60 distributed throughout the sys-
tem can describe individual requests and/or responses that
test module 10 (and the services 20(1) and 20(2) being called
by test module 10) would otherwise not have access to. Thus,
the information displayed to the user can include information
describing activity (e.g., each transaction can include a
request and its corresponding response, as well as any
requests and responses performed as different components
were called in the process of generating the corresponding
response) to which test module 10 was not a party. Accord-
ingly, even though test module 10 does not directly commu-

10

15

20

25

30

35

40

45

50

55

60

65

14

nicate with certain components of the test system, test module
10 can nevertheless display information representing those
components and characteristics of transactions in which those
components participated. Thus, a user can now view infor-
mation describing which and how components interact in
response to a single test case executed by a single test module,
without needing to create independent test cases and/or test
modules for each component. Furthermore, this information
can include information about components that are not them-
selves directly monitored by instrumentation agents 60 asso-
ciated with the testing system, such as database 30(1) and
database 30(2) of FIG. 1.

The information displayed by test module 10 can include
information identifying the response times and response data
generated by each component as well as exceptions, logged
events, and other data generated accompanying a particular
transaction or transaction fragment. This can allow a user to
conveniently track progress and/or organization of particular
transactions as well as pinpoint errors or identify where per-
formance bottlenecks are arising.

As an example of how such an instrumentation broker and
one or more instrumentation agents can be used to provide
visibility into a service oriented architecture (SOA), consider
an example situation in which the test module is configured to
execute a test case, which includes a web service call, every
ten minutes. In this example, calling the web service can
resultin three EJBs being called, and one of those EJBs can in
turnissue several SQL statements. If the service begins to fail,
a user can view the information representing the characteris-
tics of the most recent test case execution provided by the test
module (which in turn received the information from instru-
mentation agents monitoring the EJBs). This information can
indicate that one of the expected SQL statements is not being
issued (e.g., one of the instrumentation agents can generate
characteristics information identifying which SQL state-
ments were issued, and this information fails to identify one
of the expected SQL statements). Accordingly, the user can
quickly identify why the web service is failing, without hav-
ing to independently test each of the EJBs called by that web
service.

In some embodiments, instrumentation agents 60 can be
selectively enabled and disabled. For example, the instrumen-
tation modules 60 can support an isEnabled() function will
return true unless an administrator has explicitly disabled the
instrumentation module (e.g., by setting a system property
accessed by isEnabled() to a value indicating that testing is
currently disabled).

Similarly, in some embodiments, each instrumentation
agent 60 can be configured to determine whether a particular
request and/or response is part of a test case being executed by
test module 10 and selectively generate frames based upon
whether a test case is currently being executed. For example,
instrumentation modules can do this by searching requests
and/or responses for special hypertext transfer protocol
(HTTP) headers or SOAP headers. In some embodiments,
instrumentation modules can perform this search using a hash
table lookup. If the request and/or response is part of a test
case, an instrumentation agent 60 can then capture character-
istics associated with the request and/or response and cause
information identifying those characteristics to be returned to
instrumentation broker 70. Otherwise, such information may
not be returned to instrumentation broker 70.

While instrumentation agents can be selectively enabled
and/or configured to selectively capture information for test
module 10 in some embodiments, other embodiments may
not support one or both of these features. For example, some
embodiments may support selectively enabling instrumenta-

US 9,235,490 B2

15

tion agents but may not support selectively capturing and
returning information (i.e., such systems may capture and
return information for all requests and/or responses, whether
or not those requests and/or responses are part of a test case,
so long as the instrumentation agents are enabled). Similarly,
some embodiments may support selective capture of infor-
mation, but may not support selective enablement of instru-
mentation agents. Yet other embodiments may not support
either feature.

FIG. 2 shows another example of a system under test that
includes instrumentation agents 60 (which are similar to the
similarly-numbered instrumentation agents of FIG. 1), which
are configured to send frames to an instrumentation broker 70
that organizes the received frames for storage in testing data-
base 80. In this example, the system under test includes a
browser 202, a web server 204, a web service 206, and a
database 208. Web server 204 includes several sub-compo-
nents, including secure socket module 212, servlet 214, and
place order module 216.

Each component is assigned at least one IP address. For
instance, for simplicity in this particular illustrative example,
Browser 202 can be assigned IP Address 1. Web server 204
can be assigned IP Address 2. Web service 206 can be
assigned IP Address 3. Database 208 can be assigned IP
Address 4.

Some components are directly monitored by an instrumen-
tation agent, including web service 206, which includes an
instrumentation agent 60(4) monitoring a thread of execution
218, and web server 204, which includes a separate instru-
mentation agent for each sub-component. Instrumentation
agent 60(1) monitors secure socket module 212, instrumen-
tation agent 60(2) monitors servlet 214, and instrumentation
agent 60(3) monitors place order module 216.

A transaction begins, in this particular example, when
browser 202 sends a request from port 8123 to port 80 of web
server 204. No instrumentation agent monitors browser 202,
and thus no frame corresponding to this activity in browser
202 can be sent to instrumentation broker 70.

Secure socket module 212 receives the request via port 80.
This activity is detected by instrumentation agent 60(1),
which begins temporarily storing information identifying the
characteristics of the request, including the port and IP
address from which the request was sent (port 8123 and IP
Address 1), the port via which the request was received (port
80 and IP Address 2), the time at which the request was
received, the data included in the request, the amount of data
included in the request, and the like. In response to processing
the request, secure socket module 212 can send a request to
(e.g., by calling) servlet 214. Instrumentation agent 60(1) can
detect and store the characteristics of this request as well,
including information identifying the requester, secure socket
module 212, and the responder, servlet 214.

Instrumentation agent 60(2) detects the request sent to
servlet 214 and similarly begins temporarily storing charac-
teristics associated with this request. Servlet 214 processes
the request received from secure socket module 212 and
sends a corresponding request to place order module 216.
Instrumentation agent 60(2) can detect and store the charac-
teristics of this request as well.

Instrumentation agent 60(3) detects the request sent to
place order module 216 and begins storing information asso-
ciated with this request. In order to get information in order to
respond to the request, place order module 216 sends a
request to web service 206 via port 6012. Instrumentation
agent 60(3) can also store characteristics of this request,
including the port and IP address from which the request was

10

15

20

25

30

35

40

45

50

55

60

65

16
sent (port 6012 and IP Address 2) and the port and IP address
to which the request was sent (port 445 and IP Address 4).

Similarly, instrumentation agent 60(4) detects the recep-
tion of the request by thread 218 of web service 206 and
begins storing information corresponding to the request.
Thread 218 sends arequest to access database 208 in response
to the request. Instrumentation agent 60(4) also stores infor-
mation associated with this request, including the IP address
(IP Address 3) from which the request was sent and the IP
address (IP Address 4) to which the request was sent.

In response to the request from thread 218, database 208
performs the requested database access and sends a response
to thread 218. Instrumentation agent 60(4) detects this
response and stores information associated with the response,
including the time at which it was received and appropriate [P
address information. Thread 218 then generates a response to
place order module 216. Instrumentation agent 60(4) detects
this response and stores the associated characteristics. Instru-
mentation agent 60(4) then inserts all of the saved character-
istic information into a frame and sends the frame to instru-
mentation broker 70.

Instrumentation agent 60(3) detects the response received
by place order module 216 from web service 206 and saves
information corresponding to that response. Place order mod-
ule 216 processes the response and then generates a response
to servlet 214. Instrumentation agent 60(3) detects and stores
characteristics of this response, and then inserts all of the
saved characteristics (including that associated with the
request received from servlet 214, the response sent to servlet
214, the request sent to web service 206, and the response
received from web service 206) into a frame. Instrumentation
agent 60(3) then sends the frame to instrumentation broker
70.

Instrumentation agent 60(2) detects the response received
by servlet 214 from place order module 216 and saves corre-
sponding characteristic information. Servlet 214 processes
the response received from place order module 216 in order to
generate a response to secure socket module 212. Instrumen-
tation agent 60(2) also save the characteristics of that
response, and then sends a frame containing all of the saved
information to instrumentation broker 70.

Instrumentation agent 60(1) detects the response sent from
servlet 214 to secure socket module 212 and stores charac-
teristics of that response. Secure socket module 212 processes
the response to generate a response to browser 202. Instru-
mentation agent 60(1) also stores characteristics of this
response. Instrumentation agent 60(1) then generates a frame
containing all of the stored characteristics and sends the
frame to instrumentation broker 70.

In one particular example, instrumentation broker 70 can
order the frames received from instrumentation agents 60(1)-
60(4), for instance, according to timing information within
the frames. Other techniques can be used to group and order
frames received from instrumentation agents 60(1)-60(4),
including the techniques that do not (at least directly) utilize
or collect timing information in connection with particular
requests/responses or other inter-component communica-
tions. For instance, instrumentation broker 70 can use other
component-identifying information such as IP addresses,
ports and the like, as well as data sizes, amount of data, and
the like to group, correlate, and order frames within particular
transactions. Further, instrumentation broker 70 can correlate
requests and responses identified in different frames using
component-identifying information such as IP addresses,
ports and the like, as well as data sizes, to correlate requests
and responses identified in different frames with each other.
For example, the frame received from instrumentation agent

US 9,235,490 B2

17

60(1) can identity the same request (the request sent by secure
socket module 212) as the frame received from instrumenta-
tion agent 60(2). Based upon this, instrumentation broker 70
determines that the frame received from instrumentation
agent 60(1) is the parent frame of the frame received from
instrumentation agent 60(1).

Instrumentation broker 70 can also detect a potential need
for and generate several synthetic frames for a particular
transaction. For example, the frame received from instrumen-
tation agent 60(1) indicates that a request was received from
browser 202. Instrumentation broker 70 can identify that
browser 202 is not instrumented with an instrumentation
agent. Accordingly, instrumentation broker 70 can create a
synthetic frame that is the parent frame of the frame received
from instrumentation agent 60(1) and that corresponds to the
activity in browser 202 to send the initial request to web
server 204 and receive the corresponding response from web
server 204. Similarly, instrumentation broker 70 can create a
synthetic frame to correspond to the activity in database 208.

FIGS. 3A-3C are block diagrams 350a-c illustrating
example interactions in an example system for generating
information for use in modeling and testing. For instance, in
FIG. 3A, aplurality of software components 20(1)-20(V) can
be provided, one or more of which include a respective instru-
mentation agent (e.g., 60(1)-60(V)) monitoring and collecting
data corresponding to any number of events, operations, calls,
threads, software processes, network connections, etc. relat-
ing to transactions engaged in by the software component.
Indeed, in the examples of FIGS. 3A-3C a plurality of com-
munications are made between software components 20(1)-
20(V) over a plurality of network connections (e.g., Connec-
tions A-G) in one or more networks 355. Agents 60(1)-60(V)
can monitor and collect data describing characteristics of the
components’ (e.g., 20(1)-20(V)) participation in any number
of different network connections. Agents 60(1)-60(V) can
package such data in frames and provide the frames to instru-
mentation broker 70 for use in identifying transactions and
fragments of transactions involving the connections between
the components 20(I)-20(V). Data collected and included in
frames describing components’ involvement in various trans-
action can be used, as noted above, by the instrumentation
broker 70 to group communications between components and
identify transaction fragments from the communications.
Further, different transaction fragments identified from the
connection data included in the generated frames can be used
to group transaction fragments and determine that particular
transaction fragments are included in one or more common
transactions. Further, such frames can also be used by an
instrumentation broker 70 to identify a flowpath of the trans-
action between components corresponding to identified
transaction fragments.

Turning to FIG. 3B, a first transaction is shown from the
network connections during a given period including multiple
transaction fragments involving Connections G, A, and E
(represented as bolded arrows in FIG. 3B). Other connections
can also be live during the transactions (e.g., Connections B,
C, D, F, etc.) and correspond to other transactions active in the
system. The connections themselves, in some instances, may
provide no explicit indication that they pertain to a single
transaction. Indeed, in the abstract, it may not be possible for
a passive listening device or observer to identify that one or
more of the Connections A-G are involved in any common
transactions. In the example of F1G. 3B, agents (60(1), 60(I1I),
60(IV)) of components (e.g., 20(I), 20(III), 20(IV), etc.)
involved in the transaction can be monitoring network con-
nections of the components. Such monitoring can include the
monitoring of IP addresses and ports used by the components

10

15

20

25

30

40

45

55

60

65

18

in the connections, the type of connection (e.g., TCP, IPX,
PPP, and connections applying other point-to-point commu-
nication protocols, protocols conforming to RFC 1547, and
others), whether the component is reading/listening/receiv-
ing or writing/sending within the connection, as well as the
amount of data transmitted (or received) over the connection.

As an example, Connection A can include outbound data
(or a request) from Component I (20(I)) to Component 111
(20(I11)), and the amount data can be, in this particular
example, 745 bytes (as shown in FIGS. 3A-3C). The agent
60(1) of Component I (20(I) can identify the connection (e.g.,
by noting the port and IP address used by Component [in the
connection) and count the amount of data transmitted over the
connection. Agents 60(I) can also identify that the data is
outbound relative to Component I in Connection A. Such
information can be packaged and sent as a frame to instru-
mentation broker 70. Further, the agent 60(I1I) of the other
component (20(III)) participating in Connection A can also
be monitoring Component [II’s corresponding participation
in the connection, collecting similar data including the port
and IP address used by Component 111, the amount of data
received by Component 111 over the connection together with
whether the data was inbound or outbound relative to Com-
ponent I11. Likewise, agent 60(111) can package such collected
data in a frame sent to instrumentation broker 70. Other
information can be included in, linked to, or otherwise asso-
ciated with data included in frames sent to the broker 70 in
connection with a component’s participation in a connection,
including data describing other connections triggered in con-
nection with the data sent/received by the component over the
first connection. Additional data can also be included in each
of the two sent frames, such as the IP address and/or port of
the other component in the connection (e.g., the IP address
and/or port of Component 111 in the frame sent by Component
I’s agent 60(D)).

Continuing with the example of FIG. 3B, instrumentation
broker 70 can receive frames from agents 60(1) and 60(I1I)
corresponding to Connection A. Instrumentation broker 70
can identify from the frames a particular connection. In some
instances, instrumentation broker 70 can monitor a plurality
of live connections in a system and match IP address, port,
and other identifiers included in the frames to particular
monitored live connections. Indeed, in such examples, upon
first identifying a particular component’s participation in a
network connection, corresponding agents at the participat-
ing components can send preliminary frames to the instru-
mentation broker 70 alerting the broker of the connection and
the participants in the connection. Further, instrumentation
broker 70 can identify from the frames from agents 60(1) and
60(111) that a substantially identical amount of data is reported
as being exchanged using the respective agent’s component.
For instance, in this example, each of the frames from agents
60(1) and 60(I1I) can be interpreted by instrumentation broker
70 to identify that 745 bytes was exchanged in a connection
involving Component I and a connection involving Compo-
nent III. Based at least in part on the identification of a
substantially identical amount of data identified in two
frames, instrumentation broker 70 can conclude that Compo-
nents [and III were participating in the same connection (e.g.,
Connection A). Further, instrumentation broker 70 can fur-
ther determine the direction of data flow within the connec-
tion (e.g., that the 745 bytes were sent by (i.e., outbound to0)
Component I and received by (i.e., inbound to) Component 111
over the particular common connection. Instrumentation bro-
ker 70 can additionally identify, predict, or otherwise deter-
mine a particular transaction fragment involving the
exchange of data from Component I to Component I11.

US 9,235,490 B2

19

Continuing the example of FIG. 3B, each of agents 60(I)
and 60(III) can also collect data of other connections involv-
ing their respective components (e.g., 20(1) and 20(11I)). For
instance, in the example of FIG. 3B, Component I participates
in both Connections A and G and Component III participates
in Connections A and E (as well as Connections C and D, to
be discussed in connection with examples of FIG. 3C). Simi-
lar data can be collected by the agents relating to the other
connections, including the amount of data counted as being
sent or received over the connection. Additionally, agents
(e.g., 60(D), 60(111)) can further identify relationships between
connections participated in by its corresponding component.
For instance, the receipt of 202 bytes over Connection G by
Component | can trigger, for instance, a method call and
thread that initiate network Connection A and communica-
tion between Components [and I11. Agent 60(I) can observe
the relationship between connections participated in by the
component, whether they be causal, parental, hierarchical,
unrelated, or otherwise. In connection with determining an
association between two or more connections engaged in by
a particular components, an agent can identify and commu-
nicate such associations in frames or other data sent to the
instrumentation broker 70 describing the connections.
Indeed, in some instances, an agent can send data concerning
the plurality of associated connections in a single frame,
thereby identifying the connections’ relation. As an example,
in the example of FIG. 3B, agent 60(I) could bundle data
collected regarding Component I’s involvement in Connec-
tion G (e.g., inbound 202 bytes) with data collected regarding
Component I’s involvement in Connection A (e.g., outbound
745 bytes) to indicate that Connection G and Connection A
relate to Component s participation within a single transac-
tion.

Instrumentation broker 70 can determine from frames
identifying associations between connections participated in
by a single component that the identified associated connec-
tions relate to a common transaction. Indeed, such associa-
tions identified by the agents (e.g., 60(1)-60(V)) can serve to
stitch identified transaction fragments together. For instance,
in the example of FIG. 3B, instrumentation broker 70 can
independently identify Connections G, A, and E from frames
sent from each of agents 60(I), 60(111), and 60(1V). However,
to identify an association between the identified connections,
and corresponding transaction fragment determined by the
broker 70 from the received frames, associations between
Connections G and A (e.g., identified by agent 60(I)) and
associations between Connections A and E (e.g., by agent
60(111)), as well as identifications of whether data over the
connections was inbound or outbound relative to the agent’s
component, can be used to stitch transaction fragments
together corresponding to Connections G, A, and E. Indeed,
using frame data received from agents 60(I), 60(1II), and
60(1V), instrumentation broker 70 can first identify individual
transaction fragments involving Components I, III, and IV,
that identified fragments are parts of the same transaction, as
well as a flow of the fragments within the transaction relative
to the other related fragments. For instance, by identifying
that Connection G was inbound relative to Component [and
that related Connection A was outbound relative to the Com-
ponent I, it can be determined that the transaction flowed from
Component VI through Component I to Component III via
Connections G and A, respectively. Consequently, in this
example, instrumentation broker 70 can identify that a trans-
action fragment involving Component I, fielding a request of
another component (e.g., Component VI) initiated a transac-
tion that next involved the sending of data from Component I
to Component I1I over Connection A, and then the sending of

40

45

20

data from Component III to Component IV over Connection
E, as well as potentially other transaction fragments included
within the same transaction.

In addition to being able to use connection associations to
predict or determine a stitching or flowpath of transaction
fragments, instrumentation broker 70, in some instances can
use the lack of association data reported by an agent to deter-
mine a root or leaf (e.g., beginning or end) of a particular
transaction. For instance, in the example of FIG. 3B, instru-
mentation broker 70 can identify that no related connections
(or other transaction fragments) involving Component IV
were reported and conclude, predictively, that the lack of
further connections or other reporting data from Component
1V identifying or alluding to a relationship to Connection E
indicates that the transaction terminated at Component IV
(e.g, because no related outbound connections were reported
by agent 60(IV)). Similarly, root nodes can be predictively
determined based on the absence of frames documenting an
inbound connection at a particular component from which
other transaction fragments (and related connections) origi-
nate.

As noted in the example of FIG. 3B, in some instances,
components involved in connections or transaction fragments
may not be equipped with an agent, as in the example of
Component VI (20(V)). Some data may be able to be gleaned
regarding the semi-anonymous component (e.g., 20(VI)) and
sent to and used by instrumentation broker 70, such as IP
address, port number, and other identifying data gleaned from
agents (e.g., 60(1)) of other components (e.g., Component I)
interacting with the component (e.g., Component VI).
Indeed, in some instances, one or more synthetic frames can
be generated for such a component (e.g., Component VI).

Turning to FIG. 3C, a block diagram 350c¢ is shown illus-
trating that other transactions and related connections can be
active during transactions and connections monitored by
agents 60(1)-60(V) in the system. Indeed, a single agent can
be monitoring multiple connections at a single component
concurrently, including connections relating to distinct trans-
actions involving the agent’s respective software component.
For instance, in FIG. 3C, connections involved in a second
transaction are shown (as bolded arrows), including Connec-
tions B, D, and C. The connections can correspond to trans-
action fragments and transaction flow from Component II to
Component IV to Component I1I to Component V.

Despite Components I1I and IV being involved in both of
the distinct transactions described in the examples of FIGS.
3B and 3C, instrumentation broker 70 can distinguish the
components’ (e.g., 20(II1), 20(IV)) respective involvement in
multiple distinct transactions. For instance, instrumentation
broker 70 can identify associations between Connections C
and D through frames sent by agent 60(I1]) as well as asso-
ciations between Connections A and E through the frames
sent by agent 60(I1I). Further, instrumentation broker 70 can
identify that no associations have been claimed between, for
instance Connections A and C, or Connections D and E, or
other connections and transaction fragments identified by
instrumentation broker, to determine that transactions are
distinct. Further, as noted above, instrumentation broker 70
can identify roots and leafs of a particular transaction, thus,
potentially closing-off an identified transaction (or transac-
tion branch) from additional, associated transaction frag-
ments identified or determined by the instrumentation broker
70.

Turning now to FIGS. 4A-4B, table diagrams 450a-b rep-
resenting example data collected by instrumentation agents
that can be used by an example instrumentation broker 70.
Table diagrams 450a-b can reflect the tracking of data for a

US 9,235,490 B2

21

plurality of connections monitored by agents, including the
connections illustrated in the examples of FIGS. 3A-3C. For
instance, data communicated to the instrumentation broker
70 in frames generated by agents monitoring connections of
corresponding software components can be monitored,
stored, cached, recorded, or otherwise maintained by the
instrumentation broker 70 while the instrumentation broker
70 attempts to define transaction fragments and transaction
fragment groupings (i.e., transaction fragments included in a
common transaction) from the received frame data.

Further, frames received from various agents operating in a
test system can arrive at the instrumentation broker 70 asyn-
chronously and out of order, depending, for instance, on the
respective performance, monitoring, connections, etc. of a
particular agent or component. For example, as shown in the
table diagrams 450a-b of FIGS. 4A-4B, a data record is
represented of data collected from agents at the instrumenta-
tion broker (e.g., 70) at time t=x (FIG. 4A) and a subsequent
time t=x+1 (FIG. 4B). In the particular examples of FIGS.
4A-4B, an instrumentation broker may receive data from
agents monitoring various components in a system alerting
the instrumentation broker of various connections monitored
by the agents. For example, as shown in FIG. 4A, data can be
received from one or more agents for components participat-
ing in a given connection, the data providing such information
as an identification of the agent providing the information, a
port number and/or IP address used by the respective compo-
nent within the connection, and an indication of whether the
connection is currently live. Identifying live or initiating net-
work connections monitored by agents communicating with
the instrumentation broker can allow the instrumentation bro-
ker, for example, to track what frames have been received for
particular connections as well as whether the broker should be
expecting additional frames relating to a connection.

As an example, in the table 4504, in a row 460a corre-
sponding to a Connection D, at a first time t=X, a frame has
been received for the identified Connection D from an agent
“IV,” the agent reporting that 1122 bytes of outbound data
were observed by the agent at a particular software compo-
nent (e.g., Component IV). The other agent, agent “II1,” pre-
viously identified as monitoring the connection (e.g., at the
initiation of the network connection “D”) may not yet have
generated or sent a frame forwarding connection information
observed by the agent. Because the instrumentation broker
received an indication that both agents III and IV would be
monitoring Connection C, however, instrumentation broker
70 can wait for (and in some cases send requests for) the frame
generated by agent III before processing other frames, for
instance, to generate a transaction fragment identifier corre-
sponding to the data exchanged over Connection C. Accord-
ingly, as shown in FIG. 4B, after some time has past (e.g., at
time t=x+1) a frame from agent “III"” for Connection C can be
received and recorded (e.g., at row 4605). Further, using
techniques similar to those described elsewhere herein,
instrumentation broker 70 can identify that the frame from
agent “III” also identifies that the frame pertains to the same
connection, for instance, sharing consistent port and IP
address information for the component monitored by agent
“II1,” as well as an indication that the same amount of data
(1122 bytes) has been observed by agent “II1.” Based at least
in part on the observed substantially-matching data amounts
in the frames received by agents III and IV, the instrumenta-
tion broker can conclude that the agents were each watching
a separate end of the same connection and participating in a
common transaction fragment. Accordingly, instrumentation
broker 70 can generate a corresponding transaction fragment
identifier based on the substantially-matching data amounts

10

15

20

25

30

35

40

45

50

55

60

65

22

in the frames received by agents III and IV involving Con-
nection C. Similarly, received matching amount data in each
of Connections A-G can be used by the instrumentation bro-
ker 70 as the basis for identifying corresponding transaction
fragments involving the components monitored by the
respective agents.

Agents can generate frames for observed network connec-
tions so as to identify the components involved in the con-
nection (e.g., sender port, sender IP address, recipient port,
recipient IP address, component ID, agent ID, etc.) as well as
the amount of data observed over the connection by the agent,
including whether the data was observed as outbound or
inbound. In such instances, a frame can be generated that can
be interpreted by the instrumentation broker to identify the
amount of data value determined by the agent. In some
instances, this can involve including the data amount value
explicitly in the frame, concatenating the amount value with
other values corresponding to the monitored connection
(such as IP address or port number), or obfuscating the
amount value, for instance, by hashing either the value, a
concatenated string including the amount value, an array
including the amount value, etc. among many other potential
implementations and examples.

Amount data can be particularly valuable, in some imple-
mentations, where two components are engaged in several
parallel transactions and are reusing the same IP address,
ports, etc. For instance, amount data can assist in differenti-
ating between two connections with substantially identical
connection identification data (e.g., sender port, sender IP
address, recipient port, recipient IP address, component 1D,
agent ID, etc.) can be differentiated based on the respective
amounts of data observed over the connections, including
indications of whether the data was inbound or outbound, in
some instances. Further, while in some cases a frame includ-
ing a component’s IP address, port number, and data amount
value can, fairly reliably, be concluded to be locally unique, in
some instances and systems the potential exists for more than
one frame being received and processed by an instrumenta-
tion broker that includes the same or an otherwise overlap-
ping combination of IP address, port number, and data
amount values, leading to the possibility that the instrumen-
tation broker confuses two received frames as being related to
a common connection and/or transaction fragment. To avoid
such situations, in some implementations, agents can gener-
ate a globally unique frame identifier or frame that can be
differentiated from all other frames received by an instrumen-
tation broker within a given time window yet still be read to
identify the monitored data amount by the instrumentation
broker.

Further, in some instances, frame data relating to connec-
tions monitored by agents in a system can be maintained for
some limited period of time by the instrumentation broker
(e.g., in connection with waiting for additional expected
frames to arrive from corresponding agents involved in a
connection). Given the possibility that particular transactions
or connections will repeat or that other transactions will be
generated that each have substantially identical connection
descriptor data (e.g., IP addresses, port numbers, etc.) as well
as data amounts, instrumentation broker can periodically
delete received frame data, for instance, according to a data
expiration schedule. For instance, it can be determined that,
after a certain period of time, the likelihood of duplicate
frame data being received is statistically more probable than
an accepted threshold, causing the instrumentation broker to
trigger deletion of maintained frame data older than a defined
time threshold. For instance, in the particular example of
FIGS. 4A-4B, data (470) for a Connection F is still main-

US 9,235,490 B2

23

tained at the instrumentation broker at time t=x, (as shown in
table 4504) even though Connection F is no longer active and
expected frames (i.e., from agents II and III) have already
been received. However, after a certain period of time, for
instance, at t=x+1, as shown in updated table 4505, data
pertaining to the old Connection F can be deleted to make
room for the possible re-execution of a method or transaction
that results in a duplicate version of data 470 being received
by the instrumentation broker.

The instrumentation agent can extract the data amount
value from the frame for use in identifying transaction frag-
ments from received frames, as well as identifiers for the
transaction fragments. Indeed, in some instances, instrumen-
tation agent can generate a transaction fragment identifier that
is globally unique, that uses or incorporates data included in
an underlying frame reported by an agent, among other
examples, in connection with building models and data that
can beused to represent or visualize the transaction fragments
or a transaction incorporating identified transaction frag-
ments.

It should be appreciated that the tables in FIGS. 4A-4B are
not necessarily representative of actual data structures or
content used in real world implementations of the examples
of FIGS. 3A-3C but are presented for purposes of illustrating
certain concepts herein. Indeed, the examples of FIGS.
3 A-4B and others are for illustrative purposes only and imple-
mentations of the principles described herein can adopt alter-
native structures, components, and functionality and still
remain within the scope of this disclosure.

FIGS. 5A-5C are schematic diagrams 550qa-c illustrating
threads included in one or more transactions in an example
computing system. In some instances, transaction fragments
can include the execution of one or more software processes
or methods at particular components. Such software pro-
cesses can include one or more execution threads. Execution
threads can be considered the smallest unit of processing that
can be scheduled by an operating system and can be contained
inside a software process. Threads can be monitored by
instrumentation agents in some implementations and in con-
nection with the monitoring of network connections and
transaction fragments by agents.

For instance, in the example of FIG. 5A, a single compo-
nent, Service A 555, can initiate a software process, call a
method, etc. that causes one or more execution threads to be
run at component 555. Further, component 555 can be
engaged in multiple network connections as it operates. Some
ofthese network connections can be determined to be relevant
to testing or monitoring functionality provided by instrumen-
tation agents (e.g., 60) and instrumentation brokers perform-
ing operations on data collected by instrumentation agents. In
principle, agent 60 could monitor each and every network
connection initiated and participated in by software compo-
nent 555, however, in some implementations, it can be advan-
tageous to limit the number of network connections moni-
tored by the component’s agent 60, for instance, to make
more efficient use of computing resources and enhance per-
formance of the system. Indeed, in some instances, an agent
can be used to identify that a particular network connection
relates to a particular operation, software process, method
call, or transaction of interest. This can be accomplished, for
instance, by identifying a thread (e.g., “Thread A”) relevant to
the particular method call (or process) 560a and further iden-
tifying whether a particular network call 5654 is launched
from the same thread as the thread involved in the method call
560aq. In response to recognizing a network connection (e.g.,
570a to communicate with component 575) launched from a
thread monitored by the agent 60, the agent 60 can initiate

10

20

25

30

40

45

55

60

65

24

monitoring of the resultant network connection, consistent
with the principles detailed above.

Agents can monitor threads in components to generate
transaction fragment identifiers for transaction fragments
internal to the monitored component (i.e., intra-component
transaction fragments), in addition to determining a subset of
network connections for monitoring, such as described in the
example of FIG. 5A. For instance, turning to FIG. 5B, a single
thread, Thread A, within a method corresponding to method
call 5605, can be run and itself call, and initiate, a second,
child thread, Thread C. In this particular example, Thread A
can await data returned from Thread C before completing and
calling network connection 565b. As a result, transaction
fragments downstream from the transaction fragment of
Thread A can be at least partially dependent on Thread C.
Further, Thread C can result in other network calls 580 being
made involving component 555, including network connec-
tions involving outside software components other than the
component (i.e., component 575) communicated with in net-
work connection 5655 by component 555. Indeed, Thread C
can initiate a chain of transaction fragments involving com-
ponents (e.g., “Service C” 585 and “Service D” 590) other
than component 555. In short, child threads (e.g., Thread C)
of a parent thread (e.g., Thread A) can themselves launch
and/or embody one or more transaction fragments that can be
monitored by the agent 60.

Additionally, agent 60 can identify that threads run in com-
ponent 555 are children of other threads run in component
555. Based on the identification of such parent-child threads,
an instrumentation agent 60 can identify not only other intra-
component transaction fragments involving children threads,
but also identify associations between the transaction frag-
ments ofa child thread and transaction fragments of its parent
thread. For instance, agent 60 can generate a frame that
defines one or more transaction fragments based on child
thread (Thread C) and identify the parent-child relationship
of Threads A and C. In that some child threads can involve
connections with other software components (e.g., connec-
tions and transaction fragments involving “Service C” 585
and “Service D 590), transaction fragments identified from
these connections (e.g., by an instrumentation broker) can be
grouped with transaction fragments stemming from related
Thread A, allowing two “branches” of transaction fragments
to be associated by virtue of an identified parent-child rela-
tionship between threads.

Turning to FIG. 5C, while in some instances a parent-child,
or otherwise dependent relationship between threads can be
identified and used in connection with the grouping of trans-
action fragments, not all child threads may be useful or rel-
evant within the context of a parent thread’s transaction. For
instance, in the example of FIG. 5C, Thread A launches
Thread D. However, Thread A does not wait (or perhaps even
expect) data to be returned from Thread D. Indeed, in some
instances, Thread D can be thought of a running at least
partially independent of Thread A following launch. While
Thread D can technically be defined as a child of Thread A,
for purposes of stitching together transaction fragments, it
may not be appropriate to associate transaction fragments
involving or following Thread D with transaction fragments
involving Thread A.

Further, it can be difficult to identify, ex ante, whether a
child thread is truly related, or dependent on a parent thread.
Indeed, in some implementations, an agent may lack famil-
iarity with or the logic for recognizing the structure of a
method call or software process and its composite execution
threads, so as to not expect or monitor parent-child thread
relationships. Accordingly, in some implementations, an

US 9,235,490 B2

25

agent can pre-calibrate tests and monitoring of particular
software processes, methods, transactions, and the like in
order to develop logic or familiarity with execution threading
in the transactions. Indeed, it can be identified whether a child
thread, for example, returns data to a parent thread, or whether
a parent thread waits on results of or termination of a child
thread before proceeding, so as to monitor the transition from
a parent thread to a child thread and potentially identify
associated transaction fragments involving the parent and
child threads. During monitoring of a portion of a software
transaction, and a thread included in the transaction, an agent
can identity a child thread launched from a parent thread and
generate a record noting that the parent thread is the parent to
the child thread, as well as monitoring and collecting results
and data exchanged between the threads. Such information,
collected by the agent, can then be included in a generated
frame sent to an instrumentation broker.

As noted above, an agent can monitor and collect data
relating to transaction fragments involving network connec-
tion made by the agent’s software component (i.e., inter-
component transaction fragments) as well as intra-compo-
nent transaction fragments involving interactions internal to
the component, such as data exchanges between threads or
the launching of a child thread from a parent thread. Accord-
ingly, as illustrated in the block diagram 650 of FIG. 6, at least
one instrumentation agent 60 can monitor a software compo-
nent 655. In connection with the component’s 655 involve-
ment in a particular transaction, agent 60 can be used to
monitor and collect data, in some cases concurrently, relating
to inter- and intra-component transaction fragments. For
instance, agent 60 can monitor a first network connection,
ConnectionY, to identify inbound data of an amount totaling
632 bytes. Agent 60 can generate a frame that includes data
collected from the monitoring of ConnectionY. Further, agent
60 can monitor another network connection, Connection Z, to
identify outbound data of an amount totaling 745 bytes.
Monitoring of network connections involving component
655 can also include the identification of network connection
identification data, such as IP addresses and port numbers of
components involved in the monitored network connections.
Further, agent 60 can identify an association between two or
more network connections participated in by the component
based on the network connections’ pertinence to a particular
transaction, for instance based on execution thread monitor-
ing by the agent 60.

Still further, and in connection with a component’s
involvement in a particular transaction or transaction frag-
ments, agent 60 can additionally monitor processes and
execution threads to identify and collect data relating to intra-
component transaction fragments. For instance, agent 60 can
monitor parent-child execution thread relationships between
Threads A, B, and C to identify transaction fragments involv-
ing the execution threads as well as associations between the
identified transaction fragments based on the execution
thread relationships. Additionally, agent 60 can generate one
or more frames to be sent to an instrumentation broker relat-
ing to both inter- and intra-component transaction fragments
involving component 655. Indeed, agent 60 can identify asso-
ciations between inter-component transaction fragments and
intra-component transaction fragments and/or related inter-
component transaction frames and related intra-component
transaction frames. In some instances, associations between
transaction fragments, monitored network connections, or
frames generated by the agent 60 can be identified by the
agent 60 and communicated to a instrumentation broker 70
for use by the instrumentation broker 70 in grouping transac-
tion fragments into common transactions. In some instances,

10

15

20

25

30

35

40

45

50

55

60

65

26

this can involve the agent packaging monitored data relating
to distinct transaction fragments into a single frame, includ-
ing monitored data relating to both inter- and intra-compo-
nent transaction fragments.

As shown in the example of FIG. 6, frame data 660a-c can
be collected and sent by agent 60 relating to each of the
monitoring of network connections, Connections Y and Z, as
well as monitoring of execution threads, Threads A, B, and C,
by agent 60. Frame data 660a-c can be packaged and sent to
instrumentation broker 70 as a single frame or in multiple,
distinct frames. In either instance, if agent 60 identifies that
two or more of frame data 660a-c are associated with a
common transaction, agent 60 can communicate the relation-
ship of the two or more of frame data 660a-c to instrumenta-
tion broker 70 to assist instrumentation broker 70 in its stitch-
ing-together of transaction fragments identified as belonging
to a single transaction, for instance, for use in a test system
visualization model presented in a user interface, such as the
example user interface represented in FI1G. 12.

FIG. 7 is a flowchart of an example technique for generat-
ing information for use in modeling and testing that can be
performed, for example, by an instrumentation agent (e.g.,
one of instrumentation agents 60 of FIGS. 1,2,3A-3C, 6). As
shown, the technique can include detecting a request or
response, as shown at 300, detecting characteristics of that
request or response, as shown at 305, and then sending the
characteristics of that request or response to an instrumenta-
tion broker, as shown at 310. The characteristic information
can be encrypted, compressed, or otherwise manipulated
before being sent to the instrumentation broker.

Detecting a request or response can involve observing Java
beans, detecting calls to a driver associated with an applica-
tion being called, detecting HTTP requests, detecting mes-
sages in a queue, and the like. Detecting a request or response
(or information being sent or received as part of a response or
request) can also involve monitoring a socket or thread local
storage.

Detecting characteristics can involve detecting an identity
(e.g., in terms of a network address or other identifying infor-
mation included in a request or response) of the component
sending a request or response, detecting a system clock value
orother time at which a request or response is received or sent,
detecting contents and data volume of the request and/or
response, detecting log and/or error messages, detecting sys-
tem resource usage, detecting values generated by the com-
ponent generating the request and/or response that are not
actually included in the request and/or response, detecting the
identity of a network connection or communication channel
used in the request and/or response (such as TCP connec-
tions), and the like. Various types of characteristic informa-
tion are described above. In some embodiments, the instru-
mentation agent can begin obtaining characteristic
information in response to detecting receipt of a request, and
can continue to obtain characteristic information to describe
all activity in the monitored component until a response to the
request is sent by the monitored component.

FIG. 8 is a flowchart of an example technique performed,
for example, by an instrumentation broker (e.g., instrumen-
tation broker 70 of FIG. 1 or 2). Information received from
individual instrumentation agents can be organized, each of
which may be monitoring a different component and/or
executing in a different computing device, into information
describing a complete transaction that involves multiple com-
ponents.

At 400, the received frames can be sorted based upon one
or more items of timing information (e.g., such as times-
tamps) included in each frame. For example, the frames can

US 9,235,490 B2

27

be sorted based upon a timestamp included within each frame
that indicates when the instrumentation agent that generated
the frame began generating the frame. The timing informa-
tion used to sort the frames can include timing information
associated with requests and/or responses.

The sorted frames can be grouped into transactions, as
shown at 410, such that each transaction includes one or more
frames. The frames can be grouped based upon their sorted
(based upon operation 400) position, as well as upon infor-
mation within the frames that is usable to identify compo-
nents that generated requests and/or responses identified in
the frames. For example, one frame can indicate that a first
component, as identified by an IP address and/or port, sent a
request of size X at time T1. Another frame can indicate that
a second component received a request of size Y at time T2
from a component identified by the first component’s IP
address and/or port. If X and Y are approximately the same
(e.g., within a user-specified margin) and if the difference
between T2 and T1 corresponds to a communication delay
between the first and second component, it can be determined
that these two frames describe the same request and are part of
the same transaction.

As noted above, grouping frames into transactions can
involve assigning the same transaction identifier to all frames
within the same transaction. Additionally, relationships
between frames can be established through the use of parent
frame identifiers, as described above. These parent frame
identifiers can be generated, for example, by the instrumen-
tation broker and/or by instrumentation agents.

At 420, it can be determined whether any synthetic frames
are needed. Performing operation 430 can involve processing
the frames included in a particular transaction to see if any
frames identify requests and/or responses received from and/
or sent to components that are not directly monitored by
instrumentation agents. In response to detecting one or more
such frames within a transaction, the instrumentation agent
creates one or more synthetic frames, as shown at 430. Syn-
thetic frames can be generated using techniques such as those
described in more detail above.

FIG. 9 is a flowchart of an example technique for generat-
ing a model of a system under test from a database organized,
for instance, by an instrumentation broker using data pro-
vided, for instance, from a plurality of instrumentation
agents. The generated model can be adapted to allow a user to
interact with the system under test by interacting with the
model. Such a technique can be performed, for example, by a
test module such as the one illustrated in FIG. 1.

The example technique begins at 500, when information is
displayed to a user representing the system under test. This
information can identify the components within the system,
including components that do not directly interact with the
test module. The test module can identify these components
based upon characteristic information identifying which
components sent and/or received various requests and/or
responses during the execution of a test case, such that only
those components that participated in the test case are iden-
tified. The information identifying the participating compo-
nents can be generated by instrumentation modules distrib-
uted throughout the system under test and embedded within
responses returned to the test module, as described above.

Performing operation 500 can involve compressing infor-
mation contained in several frames into a single representa-
tion. For example, a component may have several sub-com-
ponents, and a transaction may include a separate frame
corresponding to each of the sub-components. The test mod-
ule can generate a single representation (e.g., display text,
icon, or the like) for the component, and display that single

35

40

45

28

representation along with information obtained from one or
more of the frames associated with the sub-components. This
type of compression can be performed on service boundaries
in some embodiments. In other instances, the presented sys-
tem representation can generate separate representations for
one or more of the sub-components. Further, the test module
can generate user friendly names, graphic icons, and/or other
representations for components or other components.

Information can also be displayed representing character-
istics of the execution of a test case in the system under test,
as shown at 505. This information can include information
generated by instrumentation agents and/or information
obtained by processing information generated by instrumen-
tation agents. For example, the test module can generate a
response time by calculating the difference between the time
at which one component sent a request to another component
and the time at which the other component returned a
response to the requester.

The information displayed at 505 can also include infor-
mation describing resource usage at a particular component
when a particular request was received and/or when a particu-
lar response was generated, information describing the con-
tents of a request or response, information identifying values
generated by the component in response to receiving a par-
ticular request or as part of the process of generating a par-
ticular response, and the like.

The information displayed at 500 can be textual or graphi-
cal, or a combination of textual and graphical information.
For example, as shown in FIG. 12, the information can
include a graphical model of the system under test as well as
text labels identifying various characteristics of the system
under test.

The user can then manipulate the displayed information in
order to view more details, modify a test case, or execute a test
case. For example, the user can select one of the components
identified as being part of the system under test during a
particular test case in order to view more details regarding that
component and its participation in the execution of the test
case. In some embodiments, the test module provides func-
tionality to graphically represent and allow user manipulation
of'atest case. Indeed, in some implementations, a test module
can include functionality similar to that described, for
instance, in U.S. patent application Ser. No. 11/328,509, titled
“Graphical Model for Test Case Viewing, Editing, and
Reporting,” filed Jan. 9, 2006 and listing John J. Michelsen as
an inventor, which is hereby incorporated by reference in its
entirety as if completely and fully set forth herein.

Thus, if a user selects to view details of a transaction or
component (e.g., by clicking on or otherwise selecting a
graphical or textual representation of that transaction or com-
ponent from the information displayed by the test module), as
detected at 510, the selected details can be displayed to the
user, as indicated at 515. Selected details can include details
identifying a transaction (e.g., by transaction identifier) or
component (e.g., by name and/or network address), details of
request(s) received by and/or response(s) generated by acom-
ponent, details regarding the component’s performance (e.g.,
in terms of response time), details relating the component’s
performance to the performance of other components (e.g.,
by displaying a chart or graph that indicates the percentage of
the total test case execution time that was due to that compo-
nent), and the like.

If the user selects to use the information to modify a test
case, as detected at 520, the test case is modified based upon
the user input, as shown at 525. For example, the character-
istics displayed at 505 can each represent a test case property,
and a user can select to add a filter or assertion to such a test

US 9,235,490 B2

29

case property. Filters can be used to modify certain properties.
For example, a filter can be applied to a property in order to
see how components that consume that property behave after
that property is modified or to determine what happens if a
particular property is forced to have a certain value. Asser-
tions can be used to vary the flow of test case execution (e.g.,
by stopping execution of the test case) based upon a property
(e.g., based upon whether the property has an expected
value). Moditfying a test case can involve editing an existing
test case or creating a new test case.

As an example, a user can select a property representing a
number of rows that were returned by a database in response
to an SQL query and make an assertion based on the number
of rows (e.g., to fail the test case if the number of rows is
greater than a particular number). Similarly, the user can
select a response time and make an assertion based upon that
response time (e.g., to fail the test case if the response time
exceeds 2 ms). Similarly, the user can select a particular
component and make an assertion based upon whether that
component is invoked during execution of the test case (e.g.,
to fail the test case if the component is not invoked).

If the user selects to execute a test case, as detected at 530,
the test module executes the test case (this test case may have
been modified at 525). Execution of a new test case can cause
new characteristic information to be generated by the instru-
mentation agents within the system under test and that new
characteristic information to be organized by an instrumen-
tation broker. Accordingly, in response to executing a test
case, the test module can update its display by reperforming
one or both of operations 500 and 505 with the new informa-
tion provided by the instrumentation modules during execu-
tion of the test case.

While FIG. 9 shows certain operations being performed
serially, it is noted that such operations can alternatively be
performed in a different order or in parallel. For example,
operations 510, 520, and 530 can be performed in parallel.
Similarly, some operations can be omitted in certain scenarios
(e.g., a user may choose to view detailed information at 515
but not to execute a test case at 535).

FIG. 10 is a simplified flowchart 1000 illustrating an
example technique for identifying 1005 a particular transac-
tion fragment from network connection data in a computer
testing environment. First data can be received 1010 from the
first component identifying an amount of data exchanged
over the network connection (i.e., measured from the time the
network connection was established between components).
Second data can be received 1015 that identifies a similar, and
in some cases substantially identical, amount of data
exchanged over the network connection, or a network con-
nection sharing at least some identified parameters as that
identified in the network connection identified in the received
first data. Such first and second data, in some instances, can be
generated and/or collected by one or more instrumentation
agents monitoring the first and second software components.
Indeed, in some instances, the first and second data can be
generated, respectively, using techniques similar to those
described in connection with the example of FIG. 11
described below. A particular transaction fragment can be
identified or determined 1020 that involves the first and sec-
ond software components from the received data, including
the identification, in the received (at 1010-1015) data of a
similar, or in some cases, substantially identical amount of
data exchanged over the network connection. In some
instances, one or more of steps 1005-1020 can be performed
by an instrumentation broker interacting with a plurality of
instrumentation agents monitoring software components in a
testing system.

10

15

20

25

30

35

40

45

50

55

60

30

In some instances, the network connection can itself be
identified 1005 from the received first data and/or the second
data, as well as the involvement of the first and second soft-
ware components. In other instances, the network connection
between first and second software components can be iden-
tified prior to the first data or second data being received 1010,
1015. In either instance, the network connection can be iden-
tified 1005 from data sent by instrumentation agents moni-
toring one or more of the first and second software compo-
nents, such as network parameters including IP address data
and/or port numbers of one or both of the software compo-
nents involved in the connection.

FIG. 11 is a simplified flowchart 1100 illustrating an
example technique for assisting an instrumentation broker in
the identification of one or more transaction fragments within
a software testing environment. For example, a particular
network connection can be identified 1105 that involves a first
software component and a second software component.
Parameters and characteristics of the particular network con-
nection can be identified as well, for instance using one or
more agents, to identify, among other network parameters,
the IP address data and/or port numbers of one or both of the
first and second software components. Further, an amount of
data exchanged over the network connection (from the time
the network connection was established) can be calculated,
observed, identified, observed, or otherwise determined
1110, for instance, using an agent monitoring either one of the
first and second software components. A transaction frag-
ment indicator can be generated 1115 based on the deter-
mined amount of data and sent 1120 to an instrumentation
broker for use in connection with the identification of one or
more transaction fragments by the instrumentation broker,
such as using a technique similar to the example technique
described in connection with FIG. 10. In some cases, the
transaction fragment indicator can be included in a frame sent
to the instrumentation broker by a corresponding instrumen-
tation agent for use by the instrumentation broker, such as in
techniques similar to those described in connection with FI1G.
10.

FIG. 12 is a block diagram of an example user interface
display window that can display a model of a test system and
allow a user to interact with the test system via the model. As
shown, the display window 600 includes a test case window
601, test case execution history window 602, a graphical
model of a system under test 603, details options 604, and
details window 605. Other displays can be used instead of
and/or in addition to the one shown in FIG. 12, which is
merely provided as an example.

The test case window 601 provides details of the current
test case (e.g., including the steps (e.g., as selected by select-
ing “steps”), filters (e.g., as selected by selecting “filters™),
and assertions (e.g., as selected by selecting “assertions™)
included in the test case), as well as options to see additional
details (e.g., by selecting to view base information (by select-
ing “info”) or to select another view (by selecting “views”) of
the test case information).

Test case execution history window 602 can include infor-
mation identifying the prior execution of the test case, includ-
ing properties that resulted from the test case. This informa-
tion can include information obtained by instrumentation
agents and organized by an instrumentation broker. Test case
execution history window can also include options to run (by
selecting “run”) the test case again and/or to modify the
settings (by selecting “settings”) of the test case.

The graphical model 603 of the system under test can
include information identifying each component that partici-
pated in the execution of the test case (as identified by the

US 9,235,490 B2

31

instrumentation modules in the system under test during
execution of that test case), as well as some characteristic
information, such as response times T1-T3 (which can also be
derived from characteristic information generated by the
instrumentation modules). In this example, each component
is represented as a block and each transaction is represented
as a line connecting two blocks.

Details options 604 can include selectable options that
allow a user to select a component and/or transaction in
graphical model 603 and then see corresponding details. For
example, a user can select to see basic information (by select-
ing “base info”) identifying a component or transaction,
details about log messages generated by a particular compo-
nent during execution of the test case (by selecting “log
msgs”), details regarding the timing and/or contents of a
particular request (by selecting “request”), details regarding
the timing and/or contents of a particular response (by select-
ing “response”), details regarding EJB3s involved in a par-
ticular transaction (by selecting “EJB3”), details regarding
the SQL statements or queries made by a particular compo-
nent (by selecting SQLs), a summary (e.g., by selecting “SQL
summary”’) of the SQL activity (e.g., a summary of the num-
ber of rows returned in response to an SQL query or the like),
the raw XML content included in a particular request or
response (by selecting “raw XML”), or the details of a docu-
ment object model (DOM) tree representing the XML content
included in a particular request or response (by selecting
“DOM tree”). Details window can display the details selected
by user selection of one of details options 604.

FIG. 13 is a block diagram of a computing device, illus-
trating one example of a software implementation of an
example instrumentation broker and other components of a
testing system. As shown, a computing device 700 can
include a processor 702 (e.g., a microprocessor, program-
mable logic device (PLD), or application specific integrated
circuit (ASIC), or multiple such processors), one or more
interfaces 704, and memory 706. Instructions executable by
processor 702 are stored in memory 706. These instructions
are executable to implement test module 10. Computing
device 700 can be a personal computer, server, personal digi-
tal assistant, cell phone, laptop, workstation, or the like.
Memory 706 can each include various types of computer
readable storage media, such as RAM (Random Access
Memory), ROM (Read Only Memory), Flash memory,
MEMS (Micro Electro-Mechanical Systems) memory, and
the like. Processor 702, memory 706, and interface(s) 704 are
coupled to send and receive data and control signals by a bus
or other interconnect.

Interfaces 704 can each include an interface to a storage
device on which instructions and/or data (e.g., such as data
identifying a test case or a testing database, including char-
acteristic information generated by one or more instrumenta-
tion agents and organized by an instrumentation broker) are
stored. Interfaces 704 can also each include an interface to a
network, such as a local area network (LAN) or wide area
network (WAN) such as the Internet, for use in communicat-
ing other devices and components. Such an interface can
allow test module 10 to send requests to and receive responses
from services and other test system components via a net-
work. Similarly, such an interface can allow an instrumenta-
tion broker to receive frames generated by instrumentation
agents. Interface 704 can also include interfaces to various
peripheral Input/Output (I/O) devices, such as a monitor, on
which a graphical display (e.g., allowing a user to view a
model and control the testing of system under test by inter-
acting with the model) can be displayed.

15

20

25

30

35

40

45

50

55

60

65

32

Test module 10 includes instrumentation broker 70, user
interface 760, and test execution module 770. Instrumenta-
tion broker 70 is configured to receive frames, which contain
characteristic information generated by instrumentation
agents, and to organize those frames for storage in testing
database 80. Multiple sets of transactions can be maintained
in testing database 80. Furthermore, multiple sets of test case
results, each including one or more transactions, can be stored
in testing database 80.

User interface 760 is configured to access testing database
80 and then use that information to display at least some ofthe
information (e.g., in the form of a graphical model like that
described above) to a user, as well as to allow the user to
interact with that information in order to modify a test case. If
a user selects to modify a test case, user interface 760 can
store the results of the modification in test case information
780, which describes one or more test cases. Test Execution
Module 770 is configured to execute test cases identified by
test case information 780.

Program instructions and data implementing various soft-
ware components such as test module 10 can be stored on
various computer readable storage media such as memory
706. In some embodiments, such program instructions can be
stored on a computer readable storage medium such as a CD
(Compact Disc), DVD (Digital Versatile Disc), hard disk,
optical disk, tape device, floppy disk, and the like. In order to
be executed by a processor, the instructions and data are
loaded into memory from the other computer readable stor-
age medium. The instructions and/or data can also be trans-
ferred to a computing device for storage in memory via a
network such as the Internet or upon a carrier medium.

It is noted that the above figures illustrate specific
examples. In other embodiments, different components can
be used to implement the testing functionality described
above. For example, while specific software components
have been described as implementing specific functionality,
this functionality can be implemented by different compo-
nents than those depicted herein. For example, the function-
ality of test module 10 can be subdivided into multiple other
test management components or integrated into another com-
ponent. Furthermore, the specific components depicted in the
figures herein can be combined or subdivided into fewer or
additional components. Further element and components of
the software tools and systems described herein can be imple-
mented within composite, distributed, and cloud architec-
tures and systems.

Although this disclosure has been described in terms of
certain implementations and generally associated methods,
alterations and permutations of these implementations and
methods will be apparent to those skilled in the art. For
example, the actions described herein can be performed in a
different order than as described and still achieve the desir-
able results. As one example, the processes depicted in the
accompanying figures do not necessarily require the particu-
lar order shown, or sequential order, to achieve the desired
results. In certain implementations, multitasking and parallel
processing may be advantageous. Additionally, other user
interface layouts and functionality can be supported. Other
variations are within the scope of the following claims.

Embodiments of the subject matter and the operations
described in this specification can be implemented in digital
electronic circuitry, or in computer software, firmware, or
hardware, including the structures disclosed in this specifica-
tion and their structural equivalents, or in combinations of one
or more of them. Embodiments of the subject matter
described in this specification can be implemented as one or
more computer programs, i.., one or more modules of com-

US 9,235,490 B2

33

puter program instructions, encoded on computer storage
medium for execution by, or to control the operation of, data
processing apparatus. Alternatively or in addition, the pro-
gram instructions can be encoded on an artificially generated
propagated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal that is generated to encode
information for transmission to suitable receiver apparatus
for execution by a data processing apparatus. A computer
storage medium can be, or be included in, a computer-read-
able storage device, a computer-readable storage substrate, a
random or serial access memory array or device, or a combi-
nation of one or more of them. Moreover, while a computer
storage medium is not a propagated signal per se, a computer
storage medium can be a source or destination of computer
program instructions encoded in an artificially generated
propagated signal. The computer storage medium can also be,
or be included in, one or more separate physical components
ormedia (e.g., multiple CDs, disks, or other storage devices),
including a distributed software environment or cloud com-
puting environment.

The operations described in this specification can be imple-
mented as operations performed by a data processing appa-
ratus on data stored on one or more computer-readable stor-
age devices or received from other sources. The terms “data
processing apparatus,” “processor,” “processing device,” and
“computing device” can encompass all kinds of apparatus,
devices, and machines for processing data, including by way
of' example a programmable processor, a computer, a system
on a chip, or multiple ones, or combinations, of the foregoing.
The apparatus can include general or special purpose logic
circuitry, e.g., a central processing unit (CPU), a blade, an
application specific integrated circuit (ASIC), or a field-pro-
grammable gate array (FPGA), among other suitable options.
While some processors and computing devices have been
described and/or illustrated as a single processor, multiple
processors may be used according to the particular needs of
the associated server. References to a single processor are
meant to include multiple processors where applicable. Gen-
erally, the processor executes instructions and manipulates
data to perform certain operations. An apparatus can also
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, a cross-
platform runtime environment, a virtual machine, or a com-
bination of one or more of them. The apparatus and execution
environment can realize various different computing model
infrastructures, such as web services, distributed computing
and grid computing infrastructures.

A computer program (also known as a program, software,
software application, script, module, (software) tools, (soft-
ware) engines, or code) can be written in any form of pro-
gramming language, including compiled or interpreted lan-
guages, declarative or procedural languages, and it can be
deployed in any form, including as a standalone program or as
a module, component, subroutine, object, or other unit suit-
able for use in a computing environment. For instance, a
computer program may include computer-readable instruc-
tions, firmware, wired or programmed hardware, or any com-
bination thereof on a tangible medium operable when
executed to perform at least the processes and operations
described herein. A computer program may, but need not,
correspond to a file in a file system. A program can be stored
in a portion of a file that holds other programs or data (e.g.,
one or more scripts stored in a markup language document),
in a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more

20

25

40

45

55

34

modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network.

Programs can be implemented as individual modules that
implement the various features and functionality through
various objects, methods, or other processes, or may instead
include a number of sub-modules, third party services, com-
ponents, libraries, and such, as appropriate. Conversely, the
features and functionality of various components can be com-
bined into single components as appropriate. In certain cases,
programs and software systems may be implemented as a
composite hosted application. For example, portions of the
composite application may be implemented as Enterprise
Java Beans (EJBs) or design-time components may have the
ability to generate run-time implementations into different
platforms, such as J2EE (Java 2 Platform, Enterprise Edi-
tion), ABAP (Advanced Business Application Programming)
objects, or Microsoft’s .NET, among others. Additionally,
applications may represent web-based applications accessed
and executed via a network (e.g., through the Internet). Fur-
ther, one or more processes associated with a particular
hosted application or service may be stored, referenced, or
executed remotely. For example, a portion of a particular
hosted application or service may be a web service associated
with the application that is remotely called, while another
portion of the hosted application may be an interface object or
agent bundled for processing at a remote client. Moreover,
any or all of the hosted applications and software service may
be a child or sub-module of another software module or
enterprise application (not illustrated) without departing from
the scope of this disclosure. Still further, portions of a hosted
application can be executed by a user working directly at a
server hosting the application, as well as remotely at a client.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable proces-
sors executing one or more computer programs to perform
actions by operating on input data and generating output. The
processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions in accor-
dance with instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA),
tablet computer, a mobile audio or video player, a game
console, a Global Positioning System (GPS) receiver, or a
portable storage device (e.g., a universal serial bus (USB)
flash drive), to name just a few. Devices suitable for storing
computer program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto

US 9,235,490 B2

35

optical disks; and CD ROM and DVD-ROM disks. The pro-
cessor and the memory can be supplemented by, or incorpo-
rated in, special purpose logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., amouse or a trackball, by which the user
can provide input to the computer. Other kinds of devices can
be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi-
tion, a computer can interact with a user by sending docu-
ments to and receiving documents from a device, including
remote devices, that are used by the user.

Embodiments of the subject matter described in this speci-
fication can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front end component, e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
subject matter described in this specification, or any combi-
nation of one or more such back end, middleware, or front end
components. The components of the system can be intercon-
nected by any form or medium of digital data communication,
e.g., acommunication network. Examples of communication
networks include any internal or external network, networks,
sub-network, or combination thereof operable to facilitate
communications between various computing components in
a system. A network may communicate, for example, Internet
Protocol (IP) packets, Frame Relay frames, Asynchronous
Transfer Mode (ATM) cells, voice, video, data, and other
suitable information between network addresses. The net-
work may also include one or more local area networks
(LANSs), radio access networks (RANs), metropolitan area
networks (MANs), wide area networks (WANSs), all or a
portion of the Internet, peer-to-peer networks (e.g., ad hoc
peer-to-peer networks), and/or any other communication sys-
tem or systems at one or more locations.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data (e.g.,an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter-
action) can be received from the client device at the server.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any inventions or of what may be claimed, but
rather as descriptions of features specific to particular
embodiments of particular inventions. Certain features that
are described in this specification in the context of separate
embodiments can also be implemented in combination in a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed

25

30

40

45

36

combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program com-
ponents and systems can generally be integrated together in a
single software product or packaged into multiple software
products.

Thus, particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. In some cases, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. In addition, the processes depicted in the
accompanying figures do not necessarily require the particu-
lar order shown, or sequential order, to achieve desirable
results.

What is claimed is:

1. A method comprising:

using a first agent interfacing with a first software compo-

nent to identify a first network connection between the
first software component and a second software compo-
nent;

determining an amount of data exchanged between the first

and second software components over the first network
connection, wherein the data corresponds to a transac-
tion involving the first software component and second
software component, the transaction comprising a plu-
rality of transaction fragments;

generating a particular fragment indicator that includes an

indication of the amount of data and an indication of
whether the data is inbound or outbound relative to the
first software component, wherein a complimentary
fragment indicator is generated corresponding to a sec-
ond software component and the complimentary frag-
ment indicator includes an indication of the amount of
data as received by the second software component from
the first software component; and

sending the particular fragment indicator to an instrumen-

tation broker for use in the identification of a particular
one of the plurality of transaction fragments involving
the first and second software components based at least
in part on a correspondence between the amount of data
indicated by both the particular fragment indicator and
the complimentary fragment indicator corresponding to
the second software component.

2. The method of claim 1, wherein the first software com-
ponent sends the exchanged data to the second software com-
ponent, and the particular fragment indicator identifies the
amount of data as outbound relative to the first software
component.

3. The method of claim 1, wherein the first software com-
ponent receives the exchanged data, and the fragment indica-
tor identifies the amount of data as inbound data relative to the
first software component.

4. The method of claim 1, wherein the first network con-
nection is identifiable from the particular fragment indicator.

5. The method of claim 1, further comprising sending
information to the instrumentation broker identifying the first
network connection.

US 9,235,490 B2

37

6. The method of claim 5, wherein the information is
adapted for use in identifying that the first agent operates in
connection with the first network connection.

7. The method of claim 5, wherein the information is sent
before sending the particular fragment indicator.

8. The method of claim 1, wherein the first network con-
nection is identified as corresponding to a particular software
process executed by the first software component and identi-
fied from a plurality of network connections involving the
first software component.

9. The method of claim 8, wherein the particular software
process includes a particular execution thread and the first
network connection is identified as corresponding to the par-
ticular operation based at least in part on an identification that
the first network connection was initiated within the particu-
lar execution thread.

10. The method of claim 8, wherein the particular software
process includes at least one particular execution thread that
launches at least one child execution thread, the method fur-
ther comprising:

identifying, using the first agent, the launching of the at

least one child execution thread by the particular execu-
tion thread;

identifying that the particular execution thread is a parent

of the child execution thread;

generating transaction fragment data corresponding to

transaction fragments performed through the child
execution thread; and

associating the transaction fragments performed through

the child execution thread with the particular transaction
fragment.

11. The method of claim 10, wherein the associating
includes defining a relationship between the transaction frag-
ments performed through the child execution thread with the
particular transaction fragment based on the parent-child
relationship of the particular execution thread to the child
execution thread.

12. The method of claim 11, wherein the relationship
between the transaction fragments is defined by a transaction
tree and at least one of the transaction fragments performed
through the child execution thread is represented as a branch
of'a transaction tree node representing the particular transac-
tion fragment.

13. The method of claim 10, further comprising sending the
generated transaction fragment data corresponding to trans-
action fragments performed through the child execution
thread to the instrumentation broker.

14. The method of claim 10, further comprising determin-
ing whether transaction fragments performed through the
child execution thread are relevant to a particular transaction
including the particular transaction fragment.

15. The method of claim 14, wherein determining whether
transaction fragments performed through the child execution
thread are relevant to the particular transaction includes pre-
viewing the particular software process by the first agent.

16. The method of claim 14, wherein determining whether
transaction fragments performed through the child execution
thread are relevant to the particular transaction includes deter-
mining whether the parent execution thread is at least par-
tially dependent on data returned by the child execution
thread, wherein child execution threads providing data upon
which the corresponding parent execution thread is at least
partially dependent are determined to be relevant to the par-
ticular transaction.

17. The method of claim 1, wherein determining the
amount of data exchanged between the first and second soft-

5

10

20

25

30

35

40

45

50

55

[

0

65

38

ware components includes counting, at the first software
component, the number of bytes exchanged over the first
network connection.

18. The method of claim 1, further comprising:

using the first agent interfacing with the first software
component to identify a second network connection
between the first software component and another soft-
ware component;

determining a second amount of data exchanged between
the first software component and the other software
component over the first network connection;

generating a second fragment indicator based on the second
amount of data; and

sending the particular fragment indicator to the instrumen-
tation broker for use in the identification of a second
transaction fragment different from the particular trans-
action fragment.

19. The method of claim 1, further comprising:

intercepting data of the transaction to be transmitted from
the first software component to the second software
component using the first agent;

analyzing the data of the transaction; and

passing the data, unmodified, to the second software com-
ponent.

20. An article comprising non-transitory, machine-read-
able media storing instructions operable to cause at least one
processor to perform operations comprising:

Using a first agent interfacing with a first software compo-
nent to identify a first network connection between the
first software component and a second software compo-
nent;

determining an amount of data exchanged between the first
and second software components over the first network
connection, wherein the data corresponds to a transac-
tion involving the first software component and second
software component, the transaction comprising a plu-
rality of transaction fragments;

generating a particular fragment indicator that includes an
indication of the amount of data and an indication of
whether the data is inbound or outbound relative to the
first software component, wherein a complimentary
fragment indicator is generated corresponding to a sec-
ond software component and the complimentary frag-
ment indicator includes an indication of the amount of
data as received by the second software component from
the first software component; and

sending the particular fragment indicator to a instrumenta-
tion broker foruse in the identification of a particular one
of the plurality of transaction fragments involving the
first and second software components based at least in
part on a correspondence between the amount of data
indicated by both the particular fragment indicator and
the complimentary fragment indicator corresponding to
the second software component.

21. A system comprising: a memory element storing data;

a processor operable to execute instructions associated with
the stored data; an instrumentation agent configured to:
identify a first network connection between a first software
component and a second software component;
determine an amount of data exchanged between the first
and second software components over the first network
connection, wherein the data corresponds to a transac-
tion involving the first software component and second
software component, the transaction comprising a plu-
rality of transaction fragments;

US 9,235,490 B2

39

intercept data of the transaction to be transmitted from the
first software component to the second software compo-
nent;

analyze the data of the transaction;

pass the data, unmodified, to the second software compo-
nent;

generate particular fragment indicator based on the amount
of data and an indication of whether the data is inbound
or outbound relative to the first software component,
wherein a complimentary fragment indicator is gener-
ated corresponding to a second software component and
the complimentary fragment indicator includes an indi-
cation of the amount of data as received by the second
software component from the first software component;
and

send the particular fragment indicator to a instrumentation
broker for use in the identification of a particular one of
the plurality of transaction fragments involving the first
and second software components based at least in part on
a correspondence between the amount of data indicated

40

by both the particular fragment indicator and the com-
plimentary fragment indicator corresponding to the sec-
ond component;

wherein the instrumentation agent monitors the first soft-

ware component.

22. The system of claim 21, wherein the instrumentation
agent is further configured to:
identify the launching of at least one child execution thread

by a particular execution thread performed by the first
software component;

identify that the particular execution thread is a parent of

the child execution thread;

generate transaction fragment data corresponding to trans-

action fragments performed through the child execution
thread; and

associate the transaction fragments performed through the

child execution thread with the particular transaction
fragment.

